Camera Pose Estimation with Unknown Principal Point

Viktor Larsson, Z. Kukelova, Yinqiang Zheng
{"title":"Camera Pose Estimation with Unknown Principal Point","authors":"Viktor Larsson, Z. Kukelova, Yinqiang Zheng","doi":"10.1109/CVPR.2018.00315","DOIUrl":null,"url":null,"abstract":"To estimate the 6-DoF extrinsic pose of a pinhole camera with partially unknown intrinsic parameters is a critical sub-problem in structure-from-motion and camera localization. In most of existing camera pose estimation solvers, the principal point is assumed to be in the image center. Unfortunately, this assumption is not always true, especially for asymmetrically cropped images. In this paper, we develop the first exactly minimal solver for the case of unknown principal point and focal length by using four and a half point correspondences (P4.5Pfuv). We also present an extremely fast solver for the case of unknown aspect ratio (P5Pfuva). The new solvers outperform the previous state-of-the-art in terms of stability and speed. Finally, we explore the extremely challenging case of both unknown principal point and radial distortion, and develop the first practical non-minimal solver by using seven point correspondences (P7Pfruv). Experimental results on both simulated data and real Internet images demonstrate the usefulness of our new solvers.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"26 1","pages":"2984-2992"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

To estimate the 6-DoF extrinsic pose of a pinhole camera with partially unknown intrinsic parameters is a critical sub-problem in structure-from-motion and camera localization. In most of existing camera pose estimation solvers, the principal point is assumed to be in the image center. Unfortunately, this assumption is not always true, especially for asymmetrically cropped images. In this paper, we develop the first exactly minimal solver for the case of unknown principal point and focal length by using four and a half point correspondences (P4.5Pfuv). We also present an extremely fast solver for the case of unknown aspect ratio (P5Pfuva). The new solvers outperform the previous state-of-the-art in terms of stability and speed. Finally, we explore the extremely challenging case of both unknown principal point and radial distortion, and develop the first practical non-minimal solver by using seven point correspondences (P7Pfruv). Experimental results on both simulated data and real Internet images demonstrate the usefulness of our new solvers.
未知主点的相机姿态估计
在针孔相机内部参数部分未知的情况下,六自由度相机的外部位姿估计是运动构造和相机定位中的关键子问题。在现有的大多数相机姿态估计算法中,假设主点位于图像中心。不幸的是,这个假设并不总是正确的,特别是对于不对称裁剪的图像。在本文中,我们利用四点半对应(P4.5Pfuv)建立了未知主点和焦距情况下的第一个精确最小解算器。我们还提出了一个非常快速的求解未知宽高比(P5Pfuva)的方法。新的解算器在稳定性和速度方面优于以前的最先进的解算器。最后,我们探索了未知主点和径向畸变的极具挑战性的情况,并利用七点对应(P7Pfruv)开发了第一个实用的非最小解算器。在模拟数据和真实网络图像上的实验结果表明了新算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信