Measuring the Output Gap Using Large Datasets

M. Barigozzi, Matteo Luciani
{"title":"Measuring the Output Gap Using Large Datasets","authors":"M. Barigozzi, Matteo Luciani","doi":"10.2139/ssrn.3217816","DOIUrl":null,"url":null,"abstract":"\n We propose a new measure of the output gap based on a dynamic factor model that is estimated on a large number of U.S. macroeconomic indicators and which incorporates relevant stylized facts about macroeconomic data (co-movements, non-stationarity, and the slow drift in long-run output growth over time). We find that, (1) from the mid-1990s to 2008, the U.S. economy operated above its potential; and, (2) in 2018:Q4, the labor market was tighter than the market for goods and services. Because it is mainly data-driven, our measure is a natural complementary tool to the theoretical models used at policy institutions.","PeriodicalId":18164,"journal":{"name":"Macroeconomics: National Income & Product Accounts eJournal","volume":"198 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macroeconomics: National Income & Product Accounts eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3217816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

We propose a new measure of the output gap based on a dynamic factor model that is estimated on a large number of U.S. macroeconomic indicators and which incorporates relevant stylized facts about macroeconomic data (co-movements, non-stationarity, and the slow drift in long-run output growth over time). We find that, (1) from the mid-1990s to 2008, the U.S. economy operated above its potential; and, (2) in 2018:Q4, the labor market was tighter than the market for goods and services. Because it is mainly data-driven, our measure is a natural complementary tool to the theoretical models used at policy institutions.
使用大数据集测量输出缺口
我们提出了一种基于动态因素模型的产出缺口的新测量方法,该模型是根据大量美国宏观经济指标进行估计的,并结合了有关宏观经济数据的相关风格化事实(协同运动、非平稳性和长期产出增长的缓慢漂移)。我们发现,(1)从20世纪90年代中期到2008年,美国经济运行高于其潜力;(2) 2018年第四季度,劳动力市场比商品和服务市场更紧张。因为它主要是数据驱动的,所以我们的测量是政策机构使用的理论模型的自然补充工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信