H. Sodabanlu, Yunpeng Wang, Shaojun Ma, Kentaroh Watanabe, M. Sugiyama, Y. Nakano
{"title":"Metalorganic vapor phase epitaxy growth of dual junction solar cell with InGaAs/GaAsP superlattice on Ge","authors":"H. Sodabanlu, Yunpeng Wang, Shaojun Ma, Kentaroh Watanabe, M. Sugiyama, Y. Nakano","doi":"10.1109/PVSC.2013.6744157","DOIUrl":null,"url":null,"abstract":"The impact of growth temperature was investigated on the quality and interface abruptness of InGaAs/GaAsP multiple quantum wells (MQWs) grown on various misoriented substrates. The growth of MQWs on substrates with a larger misoriented angle required a lower temperature. Non-radiative carrier lifetimes in MQWs strongly depended on the quality and abruptness of MQWs. On the basis of this understanding, a dual junction cell consisting of InGaAs/GaAsP superlattice top cell and Ge bottom cell was successfully fabricated. The result encourages the application of InGaAs/GaAsP superlattice for better current balancing and higher efficiency by III-V/Ge multiple junction solar cells.","PeriodicalId":6350,"journal":{"name":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)","volume":"196 1","pages":"0318-0321"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2013.6744157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The impact of growth temperature was investigated on the quality and interface abruptness of InGaAs/GaAsP multiple quantum wells (MQWs) grown on various misoriented substrates. The growth of MQWs on substrates with a larger misoriented angle required a lower temperature. Non-radiative carrier lifetimes in MQWs strongly depended on the quality and abruptness of MQWs. On the basis of this understanding, a dual junction cell consisting of InGaAs/GaAsP superlattice top cell and Ge bottom cell was successfully fabricated. The result encourages the application of InGaAs/GaAsP superlattice for better current balancing and higher efficiency by III-V/Ge multiple junction solar cells.