E-Bayesian Estimation of Hierarchical Poisson-Gamma Model on the Basis of Restricted and Unrestricted Parameter Spaces

Azeem Iqbal, Laila A. Al-Essa, Muhammad Yousaf Shad, Fuad S. Al-Duais, M. Yassen, Muhammad Ahmad Raza
{"title":"E-Bayesian Estimation of Hierarchical Poisson-Gamma Model on the Basis of Restricted and Unrestricted Parameter Spaces","authors":"Azeem Iqbal, Laila A. Al-Essa, Muhammad Yousaf Shad, Fuad S. Al-Duais, M. Yassen, Muhammad Ahmad Raza","doi":"10.1155/2023/8767200","DOIUrl":null,"url":null,"abstract":"In this study, we use the idea of the hierarchical model (HM) to estimate an unknown parameter of the hierarchical Poisson-Gamma model using the E-Bayesian (E-B) theory. We propose the idea of hierarchical probability function instead of the traditional hierarchical prior density function. We aim to infer E-B estimates with respect to the conjugate Gamma prior distribution along with the E-posterior risks on the basis of different symmetric and asymmetric loss functions (LFs) under restricted and unrestricted parameter spaces using uniform hyperprior. Whereas, E-B estimators are compared with maximum likelihood estimators (MLEs) using mean squared error (MSE). Monte Carlo simulations are prosecuted to study the efficiency of E-B estimators empirically. It is shown that the LFs under a restricted parameter space dominate to estimate the parameter of the hierarchical Poisson-Gamma model. It is also found that the E-B estimators are more precise than MLEs, and Stein’s LF has the least E-PR. Moreover, the application of outcomes to a real-life example has been made for analysis, comparison, and motivation.","PeriodicalId":72654,"journal":{"name":"Complex psychiatry","volume":"4 1","pages":"8767200:1-8767200:19"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8767200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we use the idea of the hierarchical model (HM) to estimate an unknown parameter of the hierarchical Poisson-Gamma model using the E-Bayesian (E-B) theory. We propose the idea of hierarchical probability function instead of the traditional hierarchical prior density function. We aim to infer E-B estimates with respect to the conjugate Gamma prior distribution along with the E-posterior risks on the basis of different symmetric and asymmetric loss functions (LFs) under restricted and unrestricted parameter spaces using uniform hyperprior. Whereas, E-B estimators are compared with maximum likelihood estimators (MLEs) using mean squared error (MSE). Monte Carlo simulations are prosecuted to study the efficiency of E-B estimators empirically. It is shown that the LFs under a restricted parameter space dominate to estimate the parameter of the hierarchical Poisson-Gamma model. It is also found that the E-B estimators are more precise than MLEs, and Stein’s LF has the least E-PR. Moreover, the application of outcomes to a real-life example has been made for analysis, comparison, and motivation.
基于受限和无限制参数空间的分层Poisson-Gamma模型的E-Bayesian估计
在本研究中,我们使用层次模型(HM)的思想,利用e -贝叶斯(E-B)理论估计层次泊松-伽马模型的未知参数。我们提出了层次概率函数的思想来代替传统的层次先验密度函数。我们的目的是利用均匀超先验,在受限和无限制参数空间下,基于不同的对称和非对称损失函数(LFs),推断关于共轭Gamma先验分布的E-B估计以及e -后验风险。然而,使用均方误差(MSE)将E-B估计量与最大似然估计量(MLEs)进行比较。通过蒙特卡罗模拟,对E-B估计器的有效性进行了实证研究。结果表明,在有限的参数空间下,LFs对分层泊松-伽玛模型的参数估计起主导作用。我们还发现E-B估计器比mle估计器更精确,Stein的LF估计器的E-PR最小。此外,将结果应用于现实生活中的例子,进行分析、比较和激励。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信