Advanced CMP Process Control by Using Machine Learning Image Analysis

Min-Hsuan Hsu, Chih-Chen Lin, Hsiang-Meng Yu, Kuang-Wei Chen, T. Luoh, Ling-Wu Yang, Tahone Yang, K. Chen
{"title":"Advanced CMP Process Control by Using Machine Learning Image Analysis","authors":"Min-Hsuan Hsu, Chih-Chen Lin, Hsiang-Meng Yu, Kuang-Wei Chen, T. Luoh, Ling-Wu Yang, Tahone Yang, K. Chen","doi":"10.1109/IITC51362.2021.9537421","DOIUrl":null,"url":null,"abstract":"Chemical-mechanical polishing closed loop control optimized process with machine learning assisted wafer image analysis algorithm implemented on the inter layer dielectric of 3D NAND ON stacking with poly-silicon stop layer is studied. The grayscale wafer image can be responded for film residue, stop layer damage, wafer edge damage, and thickness variation. Polishing five zones control model is trainned with wafer grayscale value by Python NN model with two hidden layers. The best condition of closed loop feedback control is deduced by machine learning assisted wafer image analysis algorithm.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":"22 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Interconnect Technology Conference (IITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC51362.2021.9537421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Chemical-mechanical polishing closed loop control optimized process with machine learning assisted wafer image analysis algorithm implemented on the inter layer dielectric of 3D NAND ON stacking with poly-silicon stop layer is studied. The grayscale wafer image can be responded for film residue, stop layer damage, wafer edge damage, and thickness variation. Polishing five zones control model is trainned with wafer grayscale value by Python NN model with two hidden layers. The best condition of closed loop feedback control is deduced by machine learning assisted wafer image analysis algorithm.
利用机器学习图像分析先进的CMP过程控制
研究了基于机器学习辅助晶圆图像分析算法的化学-机械抛光闭环控制优化过程,实现了具有多晶硅停止层的三维NAND on堆叠层间介质。灰度图像可以响应薄膜残留、停止层损伤、晶圆边缘损伤和厚度变化。采用两隐层Python神经网络模型,利用晶圆灰度值训练抛光五区控制模型。利用机器学习辅助晶圆图像分析算法,推导出闭环反馈控制的最佳条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信