Two-Dimensional FEM Approach of Metabolic Effect on Thermoregulation in Human Dermal Parts During Walking and Marathon

IF 0.8 Q3 ENGINEERING, MULTIDISCIPLINARY
D. Shrestha, S. Acharya, D. B. Gurung
{"title":"Two-Dimensional FEM Approach of Metabolic Effect on Thermoregulation in Human Dermal Parts During Walking and Marathon","authors":"D. Shrestha, S. Acharya, D. B. Gurung","doi":"10.1155/2023/5728385","DOIUrl":null,"url":null,"abstract":"The physiological mechanisms conduction, convection, and radiation exchange the heat energy in bi-directional routes between the body and the temperature field. Metabolism and evaporation are the uni-directional routes for the exchange of heat energy. In the metabolic process, the body creates internal heat energy, whereas the body loses excess heat energy through the evaporation process and maintains the body temperature. This study has shown steady and unsteady state temperature distribution in three skin layers: epidermis, dermis, and subcutaneous tissue, during walking and marathon. The results have analyzed that each skin layer temperature is higher during a marathon compared with walking due to more metabolic effects. The computation has been carried out for the two-dimensional Pennes’ bio-heat equation using a finite element approach. The generated results have been exhibited graphically.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":"28 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5728385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The physiological mechanisms conduction, convection, and radiation exchange the heat energy in bi-directional routes between the body and the temperature field. Metabolism and evaporation are the uni-directional routes for the exchange of heat energy. In the metabolic process, the body creates internal heat energy, whereas the body loses excess heat energy through the evaporation process and maintains the body temperature. This study has shown steady and unsteady state temperature distribution in three skin layers: epidermis, dermis, and subcutaneous tissue, during walking and marathon. The results have analyzed that each skin layer temperature is higher during a marathon compared with walking due to more metabolic effects. The computation has been carried out for the two-dimensional Pennes’ bio-heat equation using a finite element approach. The generated results have been exhibited graphically.
步行和马拉松运动中人体皮肤部位代谢对体温调节影响的二维有限元方法
传导、对流和辐射是人体与温度场之间双向交换热能的生理机制。代谢和蒸发是热量交换的单向途径。在代谢过程中,机体产生内部热能,而机体通过蒸发过程损失多余的热能,维持体温。本研究显示了在步行和马拉松运动中,表皮、真皮层和皮下组织三层皮肤的稳态和非稳态温度分布。分析结果显示,与步行相比,跑马拉松时皮肤的每一层温度都要高一些,因为新陈代谢的影响更大。用有限元方法对二维Pennes生物热方程进行了计算。生成的结果以图形方式展示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Modelling and Simulation in Engineering
Modelling and Simulation in Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
2.70
自引率
3.10%
发文量
42
审稿时长
18 weeks
期刊介绍: Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信