Analog VLSI implementation of neural networks

E. Vittoz
{"title":"Analog VLSI implementation of neural networks","authors":"E. Vittoz","doi":"10.1109/ISCAS.1990.112524","DOIUrl":null,"url":null,"abstract":"The potentialities of CMOS analog VLSI for the implementation of neural systems are demonstrated. It is shown how the various modes of operation of the transistor can be exploited to build very efficient neurons on a very small area with very low power consumption. The connectivity problem can be alleviated by selecting appropriate architectures. Various methods for implementing analog synaptic memories are discussed, and examples of working chips are given.<<ETX>>","PeriodicalId":91083,"journal":{"name":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","volume":"79 1","pages":"2524-2527 vol.4"},"PeriodicalIF":0.0000,"publicationDate":"1990-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.1990.112524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

Abstract

The potentialities of CMOS analog VLSI for the implementation of neural systems are demonstrated. It is shown how the various modes of operation of the transistor can be exploited to build very efficient neurons on a very small area with very low power consumption. The connectivity problem can be alleviated by selecting appropriate architectures. Various methods for implementing analog synaptic memories are discussed, and examples of working chips are given.<>
模拟VLSI实现的神经网络
演示了CMOS模拟VLSI在实现神经系统方面的潜力。它展示了如何利用晶体管的各种操作模式,在非常小的面积上以非常低的功耗构建非常高效的神经元。通过选择合适的体系结构,可以缓解连接性问题。讨论了实现模拟突触记忆的各种方法,并给出了工作芯片的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信