Cu2O nanorods with large surface area for photodegradation of organic pollutant under visible light

Lili Ma, Meng Peng, Jialin Li, Ying Yu, Zhenghua Chen
{"title":"Cu2O nanorods with large surface area for photodegradation of organic pollutant under visible light","authors":"Lili Ma, Meng Peng, Jialin Li, Ying Yu, Zhenghua Chen","doi":"10.1109/NANO.2007.4601346","DOIUrl":null,"url":null,"abstract":"Cu2O nanorods with extraordinary large surface area are synthesized by polyol method successfully. Their photocatalytic property is evaluated by the photodegradation of brilliant red dye under visible light irradiation. For comparison, Cu2O nanocubes are synthesized and evaluated with photocatalytic property as well. The results show that the photocatalytic activity of the Cu2O nanorods is more than one time higher than that for Cu2O nanocubes under visible light. Additionally, the structure of the Cu2O nanorods is very stable and they can not be oxidized to CuO even during the photocatalytic reaction process. It is noticeable that this kind of Cu2O nanorods has remarkable large surface areas 47.6 m2/g, which is about forty times as large as that for as-prepared Cu2O nanocubes and it is also three times larger than that for the reported porous Cu2O nanoparticles. The large surface area of Cu2O nanorods leads to its higher adsorption ability to the brilliant red dye and excellent high photocatalytic activity under visible light. Since Cu2O nanorods are very stable and have high photocatalytic activity under visible light, they are expected to be used in photocatalytic oxidation technology practically in the future.","PeriodicalId":6415,"journal":{"name":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","volume":"24 1","pages":"975-978"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2007.4601346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cu2O nanorods with extraordinary large surface area are synthesized by polyol method successfully. Their photocatalytic property is evaluated by the photodegradation of brilliant red dye under visible light irradiation. For comparison, Cu2O nanocubes are synthesized and evaluated with photocatalytic property as well. The results show that the photocatalytic activity of the Cu2O nanorods is more than one time higher than that for Cu2O nanocubes under visible light. Additionally, the structure of the Cu2O nanorods is very stable and they can not be oxidized to CuO even during the photocatalytic reaction process. It is noticeable that this kind of Cu2O nanorods has remarkable large surface areas 47.6 m2/g, which is about forty times as large as that for as-prepared Cu2O nanocubes and it is also three times larger than that for the reported porous Cu2O nanoparticles. The large surface area of Cu2O nanorods leads to its higher adsorption ability to the brilliant red dye and excellent high photocatalytic activity under visible light. Since Cu2O nanorods are very stable and have high photocatalytic activity under visible light, they are expected to be used in photocatalytic oxidation technology practically in the future.
具有大表面积的Cu2O纳米棒在可见光下光降解有机污染物
采用多元醇法制备了具有超大表面积的Cu2O纳米棒。通过在可见光照射下对大红染料的光降解,评价了它们的光催化性能。为了比较,合成了Cu2O纳米立方体,并对其光催化性能进行了评价。结果表明,在可见光下,纳米棒的光催化活性比纳米立方的光催化活性高1倍以上。此外,Cu2O纳米棒的结构非常稳定,即使在光催化反应过程中也不会被氧化成CuO。值得注意的是,这种Cu2O纳米棒具有显著的大表面积47.6 m2/g,是制备的Cu2O纳米立方体的40倍左右,是报道的多孔Cu2O纳米颗粒的3倍。Cu2O纳米棒的表面积大,对艳红染料具有较高的吸附能力,在可见光下具有优异的光催化活性。由于Cu2O纳米棒在可见光下非常稳定且具有较高的光催化活性,因此有望在未来的光催化氧化技术中得到实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信