Prediction of the Size-Dependent Raman Shift of Semiconductor Nanomaterials via Deep Learning

IF 0.8 4区 化学 Q4 SPECTROSCOPY
Yuping Liu, Yuqing Wang, Sicen Dong, Junchi Wu
{"title":"Prediction of the Size-Dependent Raman Shift of Semiconductor Nanomaterials via Deep Learning","authors":"Yuping Liu, Yuqing Wang, Sicen Dong, Junchi Wu","doi":"10.56530/spectroscopy.ai8969n2","DOIUrl":null,"url":null,"abstract":"Raman spectroscopy can characterize size-related properties of semiconductor nanomaterials according to the change of Raman shift. When limited to physical mechanisms, it is often difficult to predict the size-dependent Raman shift of semiconductor nanomaterials. To predict the size-dependent Raman shift more accurately and efficiently, a simple and effective method was created, demonstrated, and achieved via the deep learning model. The deep learning model is implemented by multi-layer perceptron. For size-dependent Raman shifts of three common semiconductor nanomaterials (InP, Si, CeO2), the prediction error was 1.47%, 1.18%, and 0.58%, respectively. The research has practical value in material characterization and related engineering applications, where physical mechanisms are not the focus and building predictive models quickly is key.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":"56 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.56530/spectroscopy.ai8969n2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Raman spectroscopy can characterize size-related properties of semiconductor nanomaterials according to the change of Raman shift. When limited to physical mechanisms, it is often difficult to predict the size-dependent Raman shift of semiconductor nanomaterials. To predict the size-dependent Raman shift more accurately and efficiently, a simple and effective method was created, demonstrated, and achieved via the deep learning model. The deep learning model is implemented by multi-layer perceptron. For size-dependent Raman shifts of three common semiconductor nanomaterials (InP, Si, CeO2), the prediction error was 1.47%, 1.18%, and 0.58%, respectively. The research has practical value in material characterization and related engineering applications, where physical mechanisms are not the focus and building predictive models quickly is key.
基于深度学习的半导体纳米材料尺寸相关拉曼位移预测
拉曼光谱可以根据拉曼位移的变化来表征半导体纳米材料的尺寸相关性质。当限于物理机制时,通常很难预测半导体纳米材料的尺寸相关拉曼位移。为了更准确有效地预测尺寸相关的拉曼位移,我们创建了一种简单有效的方法,并通过深度学习模型进行了演示和实现。深度学习模型由多层感知器实现。对于三种常见半导体纳米材料(InP, Si, CeO2)的尺寸相关拉曼位移,预测误差分别为1.47%,1.18%和0.58%。该研究在材料表征和相关工程应用中具有实用价值,在这些领域,物理机制不是重点,快速建立预测模型是关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Spectroscopy
Spectroscopy 物理-光谱学
CiteScore
1.10
自引率
0.00%
发文量
0
审稿时长
3 months
期刊介绍: Spectroscopy welcomes manuscripts that describe techniques and applications of all forms of spectroscopy and that are of immediate interest to users in industry, academia, and government.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信