Environmental Risk Assessment of Glufosinate-Tolerant Genetically Modified Oilseed Rape MS8, RF3 and MS8 x RF3 for Import, Processing and Feed Uses under Directive 2001/18/EC (Notification C/BE/96/01)

A. Nerland, P. Brandtzaeg, M. Finne, A. Holck, O. Junttila, Heidi Sjursen Konestabo, R. Meadow, K. Nielsen, V. Sipinen, H. Opsahl-Sorteberg, R. Vikse, A. Andreassen
{"title":"Environmental Risk Assessment of Glufosinate-Tolerant Genetically Modified Oilseed Rape MS8, RF3 and MS8 x RF3 for Import, Processing and Feed Uses under Directive 2001/18/EC (Notification C/BE/96/01)","authors":"A. Nerland, P. Brandtzaeg, M. Finne, A. Holck, O. Junttila, Heidi Sjursen Konestabo, R. Meadow, K. Nielsen, V. Sipinen, H. Opsahl-Sorteberg, R. Vikse, A. Andreassen","doi":"10.9734/ejnfs/2019/v11i130130","DOIUrl":null,"url":null,"abstract":"In preparation for a legal implementation of EU-regulation 1829/2003, the Norwegian Scientific Committee for Food Safety (VKM) has been requested by the Norwegian Directorate for Nature Management to conduct final environmental risk assessments for all genetically modified organisms (GMOs) and products containing or consisting of GMOs that are authorized in the European Union under Directive 2001/18/EC or Regulation 1829/2003/EC. The request covers scope(s) relevant to the Gene Technology Act. The request does not cover GMOs that VKM already has conducted its final risk assessments on. However, the Directorate requests VKM to consider whether updates or other changes to earlier submitted assessments are necessary.  \nThe genetically modified, glufosinate-tolerant oilseed rape lines MS8, RF3 and MS8 x RF3 (Notification C/BE/96/01) are approved under Directive 2001/18/EC for import and processing for feed and industrial purposes since 26 March 2007 (Commission Decision 2007/232/EC). In addition, processed oil from genetically modified oilseed rape derived from MS8, RF3 and MS8 x RF3 were notified as existing food according to Art. 5 of Regulation (EC) No 258/97 on novel foods and novel food ingredients in November 1999. Existing feed and feed products containing, consisting of or produced from MS8, RF3 and MS8 x RF3 were notified according to Articles 8 and 20 of Regulation (EC) No 1829/2003 and were placed on the market in January 2000.   \nAn application for renewal of the authorisation for continued marketing of existing food, food ingredients and feed materials produced from MS8, RF3 and MS8 x RF3 was submitted within the framework of Regulation (EC) No 1829/2003 in June 2007 (EFSA/GMO/RX/MS8/RF3). In addition, an application covering food containing or consisting of, and food produced from or containing ingredients produced from oilseed rape MS8, RF3 and MS8 x RF3 (with the exception of processed oil) was delivered by Bayer CropScience in June 2010 (EFSA/GMO/BE/2010/81).  \nThe VKM GMO Panel has previously issued a scientific opinion related to the notification C/BE/96/01 for the placing on the market of the oilseed rape lines for import, processing and feed uses (VKM 2008). The health and environmental risk assessment was commissioned by the Norwegian Directorate for Nature Management in connection with the national finalisation of the procedure of the notification C/BE/96/01 in 2008. Due to the publication of updated guidelines for environmental risk assessments of genetically modified plants and new scientific literature, the VKM GMO Panel has decided to deliver an updated environmental risk assessment of oilseed rape MS8, RF3 and MS8 x RF3.   \nA scientific opinion on an application for the placing on the market of MS8/RF3 for food containing or consisting of, and food produced from or containing ingredients produced from MS8/RF3 (with the exception of processed oil) (EFSA/GMO/BE/2010/81) have also been submitted by the VKM GMO Panel (VKM 2012).  \nThe environmental risk assessment of the oilseed rape MS8, RF3 and MS8 x RF3 is based on information provided by the notifier in the applications EFSA/GMO/RX/MS8/RF3, EFSA/GMO/BE/2010/8, the notification C/BE/96/01, and scientific comments from EFSA and other member states made available on the EFSA website GMO Extranet. The risk assessment also considered other peer-reviewed scientific literature as relevant.    \nThe VKM GMO Panel has evaluated MS8, RF3 and MS8 x RF3 with reference to its intended uses in the European Economic Area (EEA), and according to the principles described in the Norwegian Gene Technology Act and regulations relating to impact assessment pursuant to the Gene Technology Act, Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms, and Regulation (EC) No 1829/2003 on genetically modified food and feed. The Norwegian Scientific Committee for Food Safety has also decided to take account of the appropriate principles described in the EFSA guidelines for the risk assessment of GM plants and derived food and feed (EFSA 2006, 2011a), the environmental risk assessment of GM plants (EFSA 2010), the selection of comparators for the risk assessment of GM plants (EFSA 2011b), and for the post-market environmental monitoring of GM plants (EFSA 2006, 2011c).   \nThe scientific risk assessment of oilseed rape MS8, RF3 and MS8 x RF3 include molecular characterisation of the inserted DNA and expression of target proteins, comparative assessment of agronomic and phenotypic characteristics, unintended effects on plant fitness, potential for horizontal and vertical gene transfer, and evaluations of the post-market environmental plan. \nIn line with its mandate, VKM emphasised that assessments of sustainable development, societal utility and ethical considerations, according to the Norwegian Gene Technology Act and Regulations relating to impact assessment pursuant to the Gene Technology Act, shall not be carried out by the Panel on Genetically Modified Organisms.   \nThe genetically modified oilseed rape lines MS8 and RF3 were developed to provide a pollination control system for production of F1-hybrid seeds (MS8 x RF3).  Oilseed rape is a crop capable of undergoing both self-pollination (70%) as well as cross-pollination (30%). Therefore a system to ensure only cross-pollination is required for producing hybrids from two distinct parents. As a result of hybrid vigor cross-pollinated plants produce higher yield as compared to self-pollinating rape.   \nThe hybrid system is achieved using a pollination control system by insertion and expression of barnase and barstar genes derived from the soil bacterium Bacillus amyloliquefaciens into two separate transgenic oilseed rape lines. The barnase gene in the male sterile line MS8 encode a ribonuclease peptide (RNase), expressed in the tapetum cells during anther development. The RNase effect RNA levels, disrupting normal cell function, arresting early anther development, and results in the lack of viable pollen and male sterility.   \nThe fertility restoration line RF3 contains a barstar gene, coding for a ribonuclease inhibitor (Barstar peptide) expressed only in the tapetum cells of the pollen during anther development. The peptide specifically inhibits the Barnase RNase expressed by the MS8 line. The RNase and the ribonuclease inhibitor form a stable one-to-one complex, in which the RNase is inactivated. As a result, when pollen from the receptor line RF3 is crossed to the male sterile line MS8, the MS8 x RF3 progeny expresses the RNase inhibitor in the tapetum cells of the anthers allowing hybrid plants to develop normal anthers and restore fertility.  \nThe barnase and barstar genes in MS8 and RF3 are each linked with the bar gene from Streptomyces hygroscopus. The bar gene is driven by a plant promoter that is active in all green tissues of the plant, and encodes the enzyme phosphinothricin acetyltransferase (PAT). The PAT enzyme inactivates phosphinothricin (PPT), the active constituent of the non-selective herbicide glufosinate-ammonium. The bar gen were transferred to the oilseed rape plants as markers both for use during in vitro selection and as a breeding selection tool in seed production. \n Molecular characterization: \nThe oilseed rape hybrid MS8xRF3 is produced by conventional crossing. The parental lines MS8 and RF3 are well described in the documentation provided by the applicant, and a number of publications support their data. It seems likely that MS8 contains a complete copy of the desired T-DNA construct including the bar and barnase genes. Likewise, the event RF3 is likely to contain complete copies of the bar and barstar genes in addition to a second incomplete non-functional copy of the bar-gene. The inserts in the single events are preserved in the hybrid MS8xRF3, and the desired traits are stably inherited over generations.   \nOilseed rape MS8, RF3 and MS8xRF3 and the physical, chemical and functional characteristics of the newly expressed proteins have previously been evaluated by the VKM Panel on Genetically Modified Organisms, and considered satisfactory (VKM 2008, 2012). The GMO Panel finds the characterisation of the physical, chemical and functional properties of the recombinant inserts in the oilseed rape transformation events MS8, RF3 and MS8xRF3 to be satisfactory. The GMO Panel has not identified any novel risks associated with the modified plants based on the molecular characterisation of the inserts.  \nComparative assessment:  \nBased on results from comparative analyses of data from field trials located at representative sites and environments in Europe and Canada, it is concluded that oilseed rape MS8, RF3 and MS8 x RF3 is agronomically and phenotypically equivalent to the conventional counterpart, except for the newly expressed barnase, barstar and PAT proteins.  \nThe field evaluations support a conclusion of no phenotypic changes indicative of increased plant weed/pest potential of event MS8, RF3 and MS8 x RF3 compared to conventional oilseed rape. Furthermore, the results demonstrate that in-crop applications of glufosinate herbicide do not alter the phenotypic and agronomic characteristics of event MS8, RF3 and MS8 x RF3 compared to conventional oilseed rape varieties. \nEnvironmental risk: \nConsidering the scope of the notification C/BE/96/01, excluding cultivation purposes, the environmental risk assessment is limited to exposure through accidental spillage of viable seeds of MS8, RF3 and MS8 x RF3 into the environment during transportation, storage, handling, processing and use of derived products. \nOilseed rape is mainly a self-pollinating species, but has entomophilous flowers capable of both self- and cross-pollinating. Normally the level of outcrossing is about 30%, but outcrossing frequencies up to 55% are reported.  \nSeveral plant species related to oilseed rape that are either cultivated, occurs as weeds of cultivated and dis","PeriodicalId":11994,"journal":{"name":"European Journal of Nutrition & Food Safety","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Nutrition & Food Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/ejnfs/2019/v11i130130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In preparation for a legal implementation of EU-regulation 1829/2003, the Norwegian Scientific Committee for Food Safety (VKM) has been requested by the Norwegian Directorate for Nature Management to conduct final environmental risk assessments for all genetically modified organisms (GMOs) and products containing or consisting of GMOs that are authorized in the European Union under Directive 2001/18/EC or Regulation 1829/2003/EC. The request covers scope(s) relevant to the Gene Technology Act. The request does not cover GMOs that VKM already has conducted its final risk assessments on. However, the Directorate requests VKM to consider whether updates or other changes to earlier submitted assessments are necessary.  The genetically modified, glufosinate-tolerant oilseed rape lines MS8, RF3 and MS8 x RF3 (Notification C/BE/96/01) are approved under Directive 2001/18/EC for import and processing for feed and industrial purposes since 26 March 2007 (Commission Decision 2007/232/EC). In addition, processed oil from genetically modified oilseed rape derived from MS8, RF3 and MS8 x RF3 were notified as existing food according to Art. 5 of Regulation (EC) No 258/97 on novel foods and novel food ingredients in November 1999. Existing feed and feed products containing, consisting of or produced from MS8, RF3 and MS8 x RF3 were notified according to Articles 8 and 20 of Regulation (EC) No 1829/2003 and were placed on the market in January 2000.   An application for renewal of the authorisation for continued marketing of existing food, food ingredients and feed materials produced from MS8, RF3 and MS8 x RF3 was submitted within the framework of Regulation (EC) No 1829/2003 in June 2007 (EFSA/GMO/RX/MS8/RF3). In addition, an application covering food containing or consisting of, and food produced from or containing ingredients produced from oilseed rape MS8, RF3 and MS8 x RF3 (with the exception of processed oil) was delivered by Bayer CropScience in June 2010 (EFSA/GMO/BE/2010/81).  The VKM GMO Panel has previously issued a scientific opinion related to the notification C/BE/96/01 for the placing on the market of the oilseed rape lines for import, processing and feed uses (VKM 2008). The health and environmental risk assessment was commissioned by the Norwegian Directorate for Nature Management in connection with the national finalisation of the procedure of the notification C/BE/96/01 in 2008. Due to the publication of updated guidelines for environmental risk assessments of genetically modified plants and new scientific literature, the VKM GMO Panel has decided to deliver an updated environmental risk assessment of oilseed rape MS8, RF3 and MS8 x RF3.   A scientific opinion on an application for the placing on the market of MS8/RF3 for food containing or consisting of, and food produced from or containing ingredients produced from MS8/RF3 (with the exception of processed oil) (EFSA/GMO/BE/2010/81) have also been submitted by the VKM GMO Panel (VKM 2012).  The environmental risk assessment of the oilseed rape MS8, RF3 and MS8 x RF3 is based on information provided by the notifier in the applications EFSA/GMO/RX/MS8/RF3, EFSA/GMO/BE/2010/8, the notification C/BE/96/01, and scientific comments from EFSA and other member states made available on the EFSA website GMO Extranet. The risk assessment also considered other peer-reviewed scientific literature as relevant.    The VKM GMO Panel has evaluated MS8, RF3 and MS8 x RF3 with reference to its intended uses in the European Economic Area (EEA), and according to the principles described in the Norwegian Gene Technology Act and regulations relating to impact assessment pursuant to the Gene Technology Act, Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms, and Regulation (EC) No 1829/2003 on genetically modified food and feed. The Norwegian Scientific Committee for Food Safety has also decided to take account of the appropriate principles described in the EFSA guidelines for the risk assessment of GM plants and derived food and feed (EFSA 2006, 2011a), the environmental risk assessment of GM plants (EFSA 2010), the selection of comparators for the risk assessment of GM plants (EFSA 2011b), and for the post-market environmental monitoring of GM plants (EFSA 2006, 2011c).   The scientific risk assessment of oilseed rape MS8, RF3 and MS8 x RF3 include molecular characterisation of the inserted DNA and expression of target proteins, comparative assessment of agronomic and phenotypic characteristics, unintended effects on plant fitness, potential for horizontal and vertical gene transfer, and evaluations of the post-market environmental plan. In line with its mandate, VKM emphasised that assessments of sustainable development, societal utility and ethical considerations, according to the Norwegian Gene Technology Act and Regulations relating to impact assessment pursuant to the Gene Technology Act, shall not be carried out by the Panel on Genetically Modified Organisms.   The genetically modified oilseed rape lines MS8 and RF3 were developed to provide a pollination control system for production of F1-hybrid seeds (MS8 x RF3).  Oilseed rape is a crop capable of undergoing both self-pollination (70%) as well as cross-pollination (30%). Therefore a system to ensure only cross-pollination is required for producing hybrids from two distinct parents. As a result of hybrid vigor cross-pollinated plants produce higher yield as compared to self-pollinating rape.   The hybrid system is achieved using a pollination control system by insertion and expression of barnase and barstar genes derived from the soil bacterium Bacillus amyloliquefaciens into two separate transgenic oilseed rape lines. The barnase gene in the male sterile line MS8 encode a ribonuclease peptide (RNase), expressed in the tapetum cells during anther development. The RNase effect RNA levels, disrupting normal cell function, arresting early anther development, and results in the lack of viable pollen and male sterility.   The fertility restoration line RF3 contains a barstar gene, coding for a ribonuclease inhibitor (Barstar peptide) expressed only in the tapetum cells of the pollen during anther development. The peptide specifically inhibits the Barnase RNase expressed by the MS8 line. The RNase and the ribonuclease inhibitor form a stable one-to-one complex, in which the RNase is inactivated. As a result, when pollen from the receptor line RF3 is crossed to the male sterile line MS8, the MS8 x RF3 progeny expresses the RNase inhibitor in the tapetum cells of the anthers allowing hybrid plants to develop normal anthers and restore fertility.  The barnase and barstar genes in MS8 and RF3 are each linked with the bar gene from Streptomyces hygroscopus. The bar gene is driven by a plant promoter that is active in all green tissues of the plant, and encodes the enzyme phosphinothricin acetyltransferase (PAT). The PAT enzyme inactivates phosphinothricin (PPT), the active constituent of the non-selective herbicide glufosinate-ammonium. The bar gen were transferred to the oilseed rape plants as markers both for use during in vitro selection and as a breeding selection tool in seed production.  Molecular characterization: The oilseed rape hybrid MS8xRF3 is produced by conventional crossing. The parental lines MS8 and RF3 are well described in the documentation provided by the applicant, and a number of publications support their data. It seems likely that MS8 contains a complete copy of the desired T-DNA construct including the bar and barnase genes. Likewise, the event RF3 is likely to contain complete copies of the bar and barstar genes in addition to a second incomplete non-functional copy of the bar-gene. The inserts in the single events are preserved in the hybrid MS8xRF3, and the desired traits are stably inherited over generations.   Oilseed rape MS8, RF3 and MS8xRF3 and the physical, chemical and functional characteristics of the newly expressed proteins have previously been evaluated by the VKM Panel on Genetically Modified Organisms, and considered satisfactory (VKM 2008, 2012). The GMO Panel finds the characterisation of the physical, chemical and functional properties of the recombinant inserts in the oilseed rape transformation events MS8, RF3 and MS8xRF3 to be satisfactory. The GMO Panel has not identified any novel risks associated with the modified plants based on the molecular characterisation of the inserts.  Comparative assessment:  Based on results from comparative analyses of data from field trials located at representative sites and environments in Europe and Canada, it is concluded that oilseed rape MS8, RF3 and MS8 x RF3 is agronomically and phenotypically equivalent to the conventional counterpart, except for the newly expressed barnase, barstar and PAT proteins.  The field evaluations support a conclusion of no phenotypic changes indicative of increased plant weed/pest potential of event MS8, RF3 and MS8 x RF3 compared to conventional oilseed rape. Furthermore, the results demonstrate that in-crop applications of glufosinate herbicide do not alter the phenotypic and agronomic characteristics of event MS8, RF3 and MS8 x RF3 compared to conventional oilseed rape varieties. Environmental risk: Considering the scope of the notification C/BE/96/01, excluding cultivation purposes, the environmental risk assessment is limited to exposure through accidental spillage of viable seeds of MS8, RF3 and MS8 x RF3 into the environment during transportation, storage, handling, processing and use of derived products. Oilseed rape is mainly a self-pollinating species, but has entomophilous flowers capable of both self- and cross-pollinating. Normally the level of outcrossing is about 30%, but outcrossing frequencies up to 55% are reported.  Several plant species related to oilseed rape that are either cultivated, occurs as weeds of cultivated and dis
根据指令2001/18/EC(通知C/BE/96/01)对用于进口、加工和饲料用途的耐草铵膦转基因油菜MS8、RF3和MS8 × RF3的环境风险评估
根据其授权,VKM强调,根据挪威基因技术法案和与基因技术法案相关的影响评估条例,可持续发展、社会效用和伦理考虑的评估不应由转基因生物小组进行。开发了转基因油菜品系MS8和RF3,为生产f1杂交种子(MS8 × RF3)提供授粉控制系统。油菜是一种既能自花授粉(70%)又能异花授粉(30%)的作物。因此,要从两个不同的亲本中产生杂交种,只需要一个确保异花授粉的系统。由于杂种优势,异花授粉植物比自花授粉的油菜产量更高。该杂交系统采用传粉控制系统,通过将土壤细菌解淀粉芽孢杆菌的barnase和barstar基因插入和表达到两个独立的转基因油菜品系中。雄性不育系MS8的巴纳酶基因编码核糖核酸酶肽(RNase),在花药发育过程中在绒毡层细胞中表达。RNase影响RNA水平,破坏正常细胞功能,阻止早期花药发育,导致花粉缺乏活力和雄性不育。育性恢复系RF3含有一个barstar基因,该基因编码一种核糖核酸酶抑制剂(barstar肽),在花药发育过程中仅在花粉绒毡层细胞中表达。该肽可特异性抑制MS8细胞系表达的Barnase RNase。RNase和核糖核酸酶抑制剂形成稳定的一对一复合体,其中RNase失活。结果,当来自RF3受体系的花粉与雄性不育系MS8杂交时,MS8 × RF3后代在花药绒毡层细胞中表达RNase抑制剂,从而使杂交植株发育正常的花药并恢复育性。MS8和RF3中的barnase和barstar基因均与吸湿链霉菌的bar基因相连。bar基因由一个植物启动子驱动,该启动子在植物的所有绿色组织中都有活性,并编码磷脂酰丙氨酸乙酰转移酶(PAT)。PAT酶灭活了非选择性除草剂草铵膦的活性成分——膦丙酸(PPT)。将bar基因转移到油菜植株上,作为离体选择和制种育种选择的标记。分子表征:采用常规杂交方法获得了油菜杂交种MS8xRF3。亲本系MS8和RF3在申请人提供的文件中有很好的描述,许多出版物支持他们的数据。MS8似乎包含所需T-DNA结构的完整副本,包括棒状和藤蔓酶基因。同样,事件RF3可能包含bar和barstar基因的完整拷贝,以及bar基因的第二个不完整的无功能拷贝。单个事件中的插入在杂种MS8xRF3中被保留下来,所需的性状在几代之间稳定地遗传。油菜MS8、RF3和MS8xRF3以及新表达蛋白的物理、化学和功能特性先前已由VKM转基因生物小组评估,并被认为是令人满意的(VKM 2008, 2012)。转基因生物小组认为,在油菜转化事件MS8、RF3和MS8xRF3中重组插入物的物理、化学和功能特性的特征是令人满意的。转基因生物小组尚未根据插入物的分子特征确定与转基因植物相关的任何新风险。比较评价:基于对欧洲和加拿大代表性地点和环境的田间试验数据的比较分析结果,得出结论:油菜MS8、RF3和MS8 × RF3在农艺和表型上与传统油菜相当,除了新表达的barnase、barstar和PAT蛋白。田间评价支持以下结论:与常规油菜相比,MS8、RF3和MS8 × RF3事件没有表型变化表明植物杂草/害虫潜力增加。此外,研究结果表明,与常规油菜品种相比,草铵膦除草剂在作物中施用不会改变MS8、RF3和MS8 × RF3的表型和农艺性状。环境风险:考虑到通知C/BE/96/01的范围,除种植目的外,环境风险评估仅限于MS8、RF3和MS8 × RF3的活种子在运输、储存、处理、加工和使用衍生产品过程中意外泄漏到环境中。 油菜主要是一种自花授粉的植物,但也有昆虫性的花,既能自花授粉,也能异花授粉。正常情况下异交率约为30%,但据报道异交率高达55%。与油菜有关的几种栽培植物,以栽培和非栽培杂草的形式出现
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信