Improved feature selection approach TFIDF in text mining

L. Jing, Houkuan Huang, Hong-bo Shi
{"title":"Improved feature selection approach TFIDF in text mining","authors":"L. Jing, Houkuan Huang, Hong-bo Shi","doi":"10.1109/ICMLC.2002.1174522","DOIUrl":null,"url":null,"abstract":"This paper describes the feature selection method TFIDF (term frequency, inverse document frequency). With it, we process the data resource and set up the vector space model in order to provide a convenient data structure for text categorization. We calculate the precision of this method with the help of categorization results. According to the empirical results, we analyze its advantages and disadvantages and present a new TFIDF-based feature selection approach to improve its accuracy.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"87 1","pages":"944-946 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"207","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1174522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 207

Abstract

This paper describes the feature selection method TFIDF (term frequency, inverse document frequency). With it, we process the data resource and set up the vector space model in order to provide a convenient data structure for text categorization. We calculate the precision of this method with the help of categorization results. According to the empirical results, we analyze its advantages and disadvantages and present a new TFIDF-based feature selection approach to improve its accuracy.
文本挖掘中改进的特征选择方法TFIDF
本文描述了特征选择方法TFIDF (term frequency, inverse document frequency)。通过对数据资源进行处理,建立向量空间模型,为文本分类提供方便的数据结构。我们利用分类结果计算了该方法的精度。根据实证结果,分析了其优缺点,提出了一种新的基于tfidf的特征选择方法来提高其准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信