Finding independent transversals efficiently

Alessandra Graf, P. Haxell
{"title":"Finding independent transversals efficiently","authors":"Alessandra Graf, P. Haxell","doi":"10.1017/S0963548320000127","DOIUrl":null,"url":null,"abstract":"Abstract We give an efficient algorithm that, given a graph G and a partition V1,…,Vm of its vertex set, finds either an independent transversal (an independent set {v1,…,vm} in G such that ${v_i} \\in {V_i}$ for each i), or a subset ${\\cal B}$ of vertex classes such that the subgraph of G induced by $\\bigcup\\nolimits_{\\cal B}$ has a small dominating set. A non-algorithmic proof of this result has been known for a number of years and has been used to solve many other problems. Thus we are able to give algorithmic versions of many of these applications, a few of which we describe explicitly here.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548320000127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Abstract We give an efficient algorithm that, given a graph G and a partition V1,…,Vm of its vertex set, finds either an independent transversal (an independent set {v1,…,vm} in G such that ${v_i} \in {V_i}$ for each i), or a subset ${\cal B}$ of vertex classes such that the subgraph of G induced by $\bigcup\nolimits_{\cal B}$ has a small dominating set. A non-algorithmic proof of this result has been known for a number of years and has been used to solve many other problems. Thus we are able to give algorithmic versions of many of these applications, a few of which we describe explicitly here.
有效地找到独立的截线
摘要我们给出了一个有效的算法,给定一个图G及其顶点集的分区V1,…,Vm,求出一个独立的截线(G中的一个独立集{V1,…,Vm},使得${v_i} \in {v_i} $对于每个i),或者求出顶点类的一个子集${\cal B}$,使得由$\bigcup\nolimits_{\cal B}$引出的G的子图有一个小的支配集。这一结果的非算法证明已经存在多年,并已被用于解决许多其他问题。因此,我们能够给出许多这些应用程序的算法版本,我们在这里明确描述其中的一些。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信