Multilayer Glass Substrate with High Density Via Structure for All Inorganic Multi-chip Module

Toshiki Iwai, T. Sakai, D. Mizutani, S. Sakuyama, Kenji Iida, T. Inaba, H. Fujisaki, A. Tamura, Yoshinori Miyazawa
{"title":"Multilayer Glass Substrate with High Density Via Structure for All Inorganic Multi-chip Module","authors":"Toshiki Iwai, T. Sakai, D. Mizutani, S. Sakuyama, Kenji Iida, T. Inaba, H. Fujisaki, A. Tamura, Yoshinori Miyazawa","doi":"10.1109/ECTC.2019.00301","DOIUrl":null,"url":null,"abstract":"Silicon interposer (Si-IP) technology has been used in accelerated processing units such as graphic processing units in high-performance computing because it can package a system-on-chip and high bandwidth memories. However, the conventional Si-IP has difficulty developing larger packages because of the mismatch in the coefficient thermal expansions (CTE) of the Si-IP and the organic substrate. Therefore, the Si-IP has limited capacity for improving computing performance by the application which requires more chips. We developed a multilayer glass substrate (Glass-ST) that features a stacked glass core and propose to apply this Glass-ST to a computer board. The proposed structure has no CTE mismatch and can use high density wiring. Thus, the Glass-ST enables the assembly of more large chips than is possible using the conventional Si-IP. In this study, we prepared a 100X100 mm Glass-ST with a 5/5 µm line/space and 20 µmΦ vias. We mounted nine 21X21 mm chips with 40 µm pitch micro bumps. The results revealed that conformal plated through glass vias and a fine wiring pattern had been fabricated in the Glass-ST, and that the nine chips and Glass-ST were connected by micro bumps. The maximum warpage of the nine chips was 23 µm between temperatures of 30°C and 250°C. This means that the Glass-ST can mount chips with micro bumps due to the very slight resulting warpage. In addition, we performed thermomechanical simulation to investigate the stress experienced by the micro bumps. The results show that the maximum stresses of micro bumps with pitches ranging between 10 µm and 55 um are very similar to that of 40 µm pitch micro bumps with which the real sample was packaged. We believe the improvements in the computing performance are significant by the Glass-ST technology compared to that of the conventional Si-IP technology.","PeriodicalId":6726,"journal":{"name":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","volume":"26 1","pages":"1952-1957"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2019.00301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Silicon interposer (Si-IP) technology has been used in accelerated processing units such as graphic processing units in high-performance computing because it can package a system-on-chip and high bandwidth memories. However, the conventional Si-IP has difficulty developing larger packages because of the mismatch in the coefficient thermal expansions (CTE) of the Si-IP and the organic substrate. Therefore, the Si-IP has limited capacity for improving computing performance by the application which requires more chips. We developed a multilayer glass substrate (Glass-ST) that features a stacked glass core and propose to apply this Glass-ST to a computer board. The proposed structure has no CTE mismatch and can use high density wiring. Thus, the Glass-ST enables the assembly of more large chips than is possible using the conventional Si-IP. In this study, we prepared a 100X100 mm Glass-ST with a 5/5 µm line/space and 20 µmΦ vias. We mounted nine 21X21 mm chips with 40 µm pitch micro bumps. The results revealed that conformal plated through glass vias and a fine wiring pattern had been fabricated in the Glass-ST, and that the nine chips and Glass-ST were connected by micro bumps. The maximum warpage of the nine chips was 23 µm between temperatures of 30°C and 250°C. This means that the Glass-ST can mount chips with micro bumps due to the very slight resulting warpage. In addition, we performed thermomechanical simulation to investigate the stress experienced by the micro bumps. The results show that the maximum stresses of micro bumps with pitches ranging between 10 µm and 55 um are very similar to that of 40 µm pitch micro bumps with which the real sample was packaged. We believe the improvements in the computing performance are significant by the Glass-ST technology compared to that of the conventional Si-IP technology.
全无机多芯片模组的高密度通孔结构多层玻璃基板
硅中间层(Si-IP)技术由于可以封装片上系统和高带宽存储器,已被用于高性能计算中的图形处理单元等加速处理单元。然而,由于Si-IP与有机衬底的热膨胀系数(CTE)不匹配,传统的Si-IP难以开发更大的封装。因此,Si-IP在需要更多芯片的应用中提高计算性能的能力有限。我们开发了一种具有堆叠玻璃芯的多层玻璃基板(glass - st),并建议将这种玻璃基板应用于计算机板。所提出的结构没有CTE错配,可以使用高密度布线。因此,Glass-ST可以组装比传统Si-IP更大的芯片。在本研究中,我们制备了100X100 mm的Glass-ST,具有5/5µm线/空间和20µmΦ通孔。我们安装了9个21X21毫米的芯片,带有40微米间距的微凸起。结果表明,在glass - st中制备了共形镀孔和精细的布线模式,9个芯片与glass - st通过微凸点连接。在温度为30°C到250°C之间,9个芯片的最大翘曲为23 μ m。这意味着由于非常轻微的翘曲,Glass-ST可以安装带有微凸起的芯片。此外,我们进行了热力学模拟,以研究微凸起所经历的应力。结果表明,10 ~ 55 μ m间距微凸点的最大应力与实际样品包装时40 μ m间距微凸点的最大应力非常相似。我们相信与传统Si-IP技术相比,Glass-ST技术在计算性能方面的改进是显著的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信