Some perturbation results for quasi-bases and other sequences of vectors

IF 0.5 4区 数学 Q3 MATHEMATICS
F. Bagarello, R. Corso
{"title":"Some perturbation results for quasi-bases and other sequences of vectors","authors":"F. Bagarello, R. Corso","doi":"10.1063/5.0131314","DOIUrl":null,"url":null,"abstract":"We discuss some perturbation results concerning certain pairs of sequences of vectors in a Hilbert space [Formula: see text] and producing new sequences, which share, with the original ones, reconstruction formulas on a dense subspace of [Formula: see text] or on the whole space. We also propose some preliminary results on the same issue, but in a distributional settings.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"71 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0131314","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We discuss some perturbation results concerning certain pairs of sequences of vectors in a Hilbert space [Formula: see text] and producing new sequences, which share, with the original ones, reconstruction formulas on a dense subspace of [Formula: see text] or on the whole space. We also propose some preliminary results on the same issue, but in a distributional settings.
拟基和其他向量序列的摄动结果
我们讨论了Hilbert空间中某些向量序列对的摄动结果[公式:见文],并生成了与原序列相同的新序列,这些新序列在[公式:见文]的稠密子空间上或在整个空间上具有重构公式。我们也提出了一些关于同样问题的初步结果,但在分布设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects: mathematical problems of modern physics; complex analysis and its applications; asymptotic problems of differential equations; spectral theory including inverse problems and their applications; geometry in large and differential geometry; functional analysis, theory of representations, and operator algebras including ergodic theory. The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信