Modeling efficiency and safety on an aircraft carrier flight deck

IF 1 Q3 ENGINEERING, MULTIDISCIPLINARY
M. Cummings, Songpo Li, Hong Han, Carlos Aguilar
{"title":"Modeling efficiency and safety on an aircraft carrier flight deck","authors":"M. Cummings, Songpo Li, Hong Han, Carlos Aguilar","doi":"10.1177/15485129221150939","DOIUrl":null,"url":null,"abstract":"Aircraft carrier flight decks present high-risk mission-critical environments that need to be both efficient and safe. The concept of optimal manning, having just enough people to do the job safely and efficiently, is paramount in order to put the least amount of people at risk while not sacrificing mission effectiveness. To this end, an agent-based model, the optimal manning simulation (OMS) was developed, which specifically looks at the launch process of the flight deck in order to quantify the risk and efficiency of people working on the flight deck. OMS models different classes of crew members on the flight deck, aircraft, and resources like catapults. OMS measures safety through collisions or near-collisions of people and aircraft, as well as how long it takes to execute a launch cycle, the primary efficiency metric. Validation and sensitivity analyses provide confidence in OMS results. To demonstrate its utility, OMS is also used to predict how the future introduction of unmanned aerial vehicles could impact staffing and performance measures.","PeriodicalId":44661,"journal":{"name":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15485129221150939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Aircraft carrier flight decks present high-risk mission-critical environments that need to be both efficient and safe. The concept of optimal manning, having just enough people to do the job safely and efficiently, is paramount in order to put the least amount of people at risk while not sacrificing mission effectiveness. To this end, an agent-based model, the optimal manning simulation (OMS) was developed, which specifically looks at the launch process of the flight deck in order to quantify the risk and efficiency of people working on the flight deck. OMS models different classes of crew members on the flight deck, aircraft, and resources like catapults. OMS measures safety through collisions or near-collisions of people and aircraft, as well as how long it takes to execute a launch cycle, the primary efficiency metric. Validation and sensitivity analyses provide confidence in OMS results. To demonstrate its utility, OMS is also used to predict how the future introduction of unmanned aerial vehicles could impact staffing and performance measures.
航空母舰飞行甲板的效率和安全性建模
航空母舰飞行甲板呈现出高风险的关键任务环境,需要既高效又安全。最佳人员配置的概念,即有足够的人安全有效地完成工作,是最重要的,以便在不牺牲任务效率的情况下,使最少的人处于危险之中。为此,开发了基于agent的最优配员仿真模型(OMS),该模型专门研究飞行甲板的发射过程,以量化在飞行甲板上工作的人员的风险和效率。OMS对飞行甲板、飞机和弹射器等资源上不同级别的机组人员进行建模。OMS通过人员与飞机的碰撞或接近碰撞,以及执行发射周期所需的时间(主要效率指标)来衡量安全性。验证和敏感性分析为OMS结果提供了可信度。为了证明其实用性,OMS还被用于预测未来无人驾驶飞行器的引入对人员配备和绩效指标的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
12.50%
发文量
40
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信