{"title":"Continuous and discrete Noether's fractional conserved quantities for restricted calculus of variations","authors":"J. Cresson, F. Jiménez, S. Ober-Blöbaum","doi":"10.3934/jgm.2021012","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We prove a Noether's theorem of the first kind for the so-called <i>restricted fractional Euler-Lagrange equations</i> and their discrete counterpart, introduced in [<xref ref-type=\"bibr\" rid=\"b26\">26</xref>,<xref ref-type=\"bibr\" rid=\"b27\">27</xref>], based in previous results [<xref ref-type=\"bibr\" rid=\"b11\">11</xref>,<xref ref-type=\"bibr\" rid=\"b35\">35</xref>]. Prior, we compare the restricted fractional calculus of variations to the <i>asymmetric fractional calculus of variations</i>, introduced in [<xref ref-type=\"bibr\" rid=\"b14\">14</xref>], and formulate the restricted calculus of variations using the <i>discrete embedding</i> approach [<xref ref-type=\"bibr\" rid=\"b12\">12</xref>,<xref ref-type=\"bibr\" rid=\"b18\">18</xref>]. The two theories are designed to provide a variational formulation of dissipative systems, and are based on modeling irreversbility by means of fractional derivatives. We explicit the role of time-reversed solutions and causality in the restricted fractional calculus of variations and we propose an alternative formulation. Finally, we implement our results for a particular example and provide simulations, actually showing the constant behaviour in time of the discrete conserved quantities outcoming the Noether's theorems.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jgm.2021012","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
We prove a Noether's theorem of the first kind for the so-called restricted fractional Euler-Lagrange equations and their discrete counterpart, introduced in [26,27], based in previous results [11,35]. Prior, we compare the restricted fractional calculus of variations to the asymmetric fractional calculus of variations, introduced in [14], and formulate the restricted calculus of variations using the discrete embedding approach [12,18]. The two theories are designed to provide a variational formulation of dissipative systems, and are based on modeling irreversbility by means of fractional derivatives. We explicit the role of time-reversed solutions and causality in the restricted fractional calculus of variations and we propose an alternative formulation. Finally, we implement our results for a particular example and provide simulations, actually showing the constant behaviour in time of the discrete conserved quantities outcoming the Noether's theorems.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.