{"title":"Continuous and discrete Noether's fractional conserved quantities for restricted calculus of variations","authors":"J. Cresson, F. Jiménez, S. Ober-Blöbaum","doi":"10.3934/jgm.2021012","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We prove a Noether's theorem of the first kind for the so-called <i>restricted fractional Euler-Lagrange equations</i> and their discrete counterpart, introduced in [<xref ref-type=\"bibr\" rid=\"b26\">26</xref>,<xref ref-type=\"bibr\" rid=\"b27\">27</xref>], based in previous results [<xref ref-type=\"bibr\" rid=\"b11\">11</xref>,<xref ref-type=\"bibr\" rid=\"b35\">35</xref>]. Prior, we compare the restricted fractional calculus of variations to the <i>asymmetric fractional calculus of variations</i>, introduced in [<xref ref-type=\"bibr\" rid=\"b14\">14</xref>], and formulate the restricted calculus of variations using the <i>discrete embedding</i> approach [<xref ref-type=\"bibr\" rid=\"b12\">12</xref>,<xref ref-type=\"bibr\" rid=\"b18\">18</xref>]. The two theories are designed to provide a variational formulation of dissipative systems, and are based on modeling irreversbility by means of fractional derivatives. We explicit the role of time-reversed solutions and causality in the restricted fractional calculus of variations and we propose an alternative formulation. Finally, we implement our results for a particular example and provide simulations, actually showing the constant behaviour in time of the discrete conserved quantities outcoming the Noether's theorems.</p>","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jgm.2021012","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
We prove a Noether's theorem of the first kind for the so-called restricted fractional Euler-Lagrange equations and their discrete counterpart, introduced in [26,27], based in previous results [11,35]. Prior, we compare the restricted fractional calculus of variations to the asymmetric fractional calculus of variations, introduced in [14], and formulate the restricted calculus of variations using the discrete embedding approach [12,18]. The two theories are designed to provide a variational formulation of dissipative systems, and are based on modeling irreversbility by means of fractional derivatives. We explicit the role of time-reversed solutions and causality in the restricted fractional calculus of variations and we propose an alternative formulation. Finally, we implement our results for a particular example and provide simulations, actually showing the constant behaviour in time of the discrete conserved quantities outcoming the Noether's theorems.
期刊介绍:
The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal:
1. Lagrangian and Hamiltonian mechanics
2. Symplectic and Poisson geometry and their applications to mechanics
3. Geometric and optimal control theory
4. Geometric and variational integration
5. Geometry of stochastic systems
6. Geometric methods in dynamical systems
7. Continuum mechanics
8. Classical field theory
9. Fluid mechanics
10. Infinite-dimensional dynamical systems
11. Quantum mechanics and quantum information theory
12. Applications in physics, technology, engineering and the biological sciences.