{"title":"Multi-step-ahead information-based feedback control for active binaural localization","authors":"Gabriel Bustamante, P. Danès","doi":"10.1109/IROS.2017.8206589","DOIUrl":null,"url":null,"abstract":"Binaural sound localization is known to be improved by incorporating the movement of the sensor. “Active” schemes based on this paradigm can overcome conventional limitations such as front-back ambiguity and source range recovery. Starting from a Gaussian prior on the relative position of a source, this paper determines the motion of a binaural sensor which leads to the most effective path for localization. To this aim, a reward function is defined as the conditional expectation, over the yet unknown N next observations, of the entropy of the N-step-ahead posterior pdf of the relative source position. The optimal motion of the binaural sensor is obtained from a constrained optimization problem involving the automatic differentiation of the reward function. The method is validated in simulation, and is being implemented on a real-life robotic test bed.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"5 1","pages":"6729-6734"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8206589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Binaural sound localization is known to be improved by incorporating the movement of the sensor. “Active” schemes based on this paradigm can overcome conventional limitations such as front-back ambiguity and source range recovery. Starting from a Gaussian prior on the relative position of a source, this paper determines the motion of a binaural sensor which leads to the most effective path for localization. To this aim, a reward function is defined as the conditional expectation, over the yet unknown N next observations, of the entropy of the N-step-ahead posterior pdf of the relative source position. The optimal motion of the binaural sensor is obtained from a constrained optimization problem involving the automatic differentiation of the reward function. The method is validated in simulation, and is being implemented on a real-life robotic test bed.