Predicting Success for Computer Science Students in CS2 using Grades in Previous Courses

S. Malla, Jing Wang, William E. Hendrix, Kenneth J. Christensen
{"title":"Predicting Success for Computer Science Students in CS2 using Grades in Previous Courses","authors":"S. Malla, Jing Wang, William E. Hendrix, Kenneth J. Christensen","doi":"10.1109/FIE43999.2019.9028577","DOIUrl":null,"url":null,"abstract":"In this Work in Progress Innovative Practice paper, we describe a process for finding predictors for student success – and failure – for Computer Science and Computer Engineering students with a focus on the second programming course (CS2). We use readily available off-the-shelf statistical and data mining tools for generating summary statistics, calculating correlations, testing statistical significance, and creating decision trees. We analyze grade data from the first programming course (CS1), entry-level STEM courses (Calculus and Physics), and an English course to determine success predictors for CS2. Not surprisingly, the grade in CS1 is the best predictor for success in CS2. We also find that success in CS2 is independent of gender. Looking deeper into the data, we find characteristics of students who are very likely to pass or fail CS2. Being able to identify predictors for success is useful for calibrating admission criteria and designing appropriate interventions (e.g., requiring prereq classes, recitation sessions, and so on) to improve success probability for all students. A key contribution of this paper is a step-by-step process that can be used by other programs to find success predictors and design appropriate interventions.","PeriodicalId":6700,"journal":{"name":"2019 IEEE Frontiers in Education Conference (FIE)","volume":"16 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Frontiers in Education Conference (FIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIE43999.2019.9028577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this Work in Progress Innovative Practice paper, we describe a process for finding predictors for student success – and failure – for Computer Science and Computer Engineering students with a focus on the second programming course (CS2). We use readily available off-the-shelf statistical and data mining tools for generating summary statistics, calculating correlations, testing statistical significance, and creating decision trees. We analyze grade data from the first programming course (CS1), entry-level STEM courses (Calculus and Physics), and an English course to determine success predictors for CS2. Not surprisingly, the grade in CS1 is the best predictor for success in CS2. We also find that success in CS2 is independent of gender. Looking deeper into the data, we find characteristics of students who are very likely to pass or fail CS2. Being able to identify predictors for success is useful for calibrating admission criteria and designing appropriate interventions (e.g., requiring prereq classes, recitation sessions, and so on) to improve success probability for all students. A key contribution of this paper is a step-by-step process that can be used by other programs to find success predictors and design appropriate interventions.
利用以往课程成绩预测CS2计算机科学专业学生的成功
在这篇正在进行的创新实践论文中,我们描述了一个寻找学生成功和失败预测因素的过程,重点是计算机科学和计算机工程专业的第二门编程课程(CS2)。我们使用现成的统计和数据挖掘工具来生成汇总统计、计算相关性、测试统计显著性和创建决策树。我们分析了第一门编程课程(CS1)、入门级STEM课程(微积分和物理)和一门英语课程的成绩数据,以确定CS2的成功预测因素。毫不奇怪,CS1的成绩是CS2成功的最佳预测指标。我们还发现CS2的成功与性别无关。深入研究数据,我们发现了CS2很可能通过或不通过的学生的特征。能够识别成功的预测因素对于校准入学标准和设计适当的干预措施(例如,要求预习课程,复习课程等)以提高所有学生的成功概率是有用的。本文的一个关键贡献是一个循序渐进的过程,可以被其他项目用来寻找成功的预测因素和设计适当的干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信