B. Navarro, A. Cherubini, A. Fonte, G. Poisson, P. Fraisse
{"title":"A framework for intuitive collaboration with a mobile manipulator","authors":"B. Navarro, A. Cherubini, A. Fonte, G. Poisson, P. Fraisse","doi":"10.1109/IROS.2017.8206532","DOIUrl":null,"url":null,"abstract":"In this paper, we present a control strategy that enables intuitive physical human-robot collaboration with mobile manipulators equipped with an omnidirectional base. When interacting with a human operator, intuitiveness of operation is a major concern. To this end, we propose a redundancy solution that allows the mobile base to be fixed when working locally and moves it only when the robot approaches a set of constraints. These constraints include distance to singular poses, minimum of manipulability and distance to objects and angular deviation. Experimental results with a Kuka LWR4 arm mounted on a Neobotix MPO700 mobile base validate the proposed approach.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"99 1","pages":"6293-6298"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8206532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
In this paper, we present a control strategy that enables intuitive physical human-robot collaboration with mobile manipulators equipped with an omnidirectional base. When interacting with a human operator, intuitiveness of operation is a major concern. To this end, we propose a redundancy solution that allows the mobile base to be fixed when working locally and moves it only when the robot approaches a set of constraints. These constraints include distance to singular poses, minimum of manipulability and distance to objects and angular deviation. Experimental results with a Kuka LWR4 arm mounted on a Neobotix MPO700 mobile base validate the proposed approach.