{"title":"An analytic framework for enhancing the performance of big heterogeneous data analysis","authors":"M. Salama, H. Kader, A. Abdelwahab","doi":"10.1177/1847979021990523","DOIUrl":null,"url":null,"abstract":"The use of social media networks is becoming a current phenomenon in the world today where people are sharing posts and tweets, connect with different groups, and share their opinions about things. This data is extremely heterogeneous and so it is hard to analyze and derive information from this data that is considered an indispensable source for decision-makers. New techniques are therefore needed to handle these huge amounts of data to find the hidden information thus improve the results of the analysis. We are developing a framework for the analysis of heterogeneous data using machine learning (ML) techniques. In contrast to most of the literature frameworks that focus on a specific type of heterogeneous data for evaluating the proposed framework, we have analyzed 15k tweets data from six American airlines. These tweets are collected from the open stream of Twitter, also predict, classify each tweet as a negative or positive review, and test the ability of deep learning (DL) algorithms by comparing it with traditional ML algorithms. The findings confirmed the validity of the proposed framework and helped to achieve the study objective by providing excellent analysis performance and provide insights into additional aspects of information extraction from heterogeneous data.","PeriodicalId":45882,"journal":{"name":"International Journal of Engineering Business Management","volume":"51 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Business Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1847979021990523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 10
Abstract
The use of social media networks is becoming a current phenomenon in the world today where people are sharing posts and tweets, connect with different groups, and share their opinions about things. This data is extremely heterogeneous and so it is hard to analyze and derive information from this data that is considered an indispensable source for decision-makers. New techniques are therefore needed to handle these huge amounts of data to find the hidden information thus improve the results of the analysis. We are developing a framework for the analysis of heterogeneous data using machine learning (ML) techniques. In contrast to most of the literature frameworks that focus on a specific type of heterogeneous data for evaluating the proposed framework, we have analyzed 15k tweets data from six American airlines. These tweets are collected from the open stream of Twitter, also predict, classify each tweet as a negative or positive review, and test the ability of deep learning (DL) algorithms by comparing it with traditional ML algorithms. The findings confirmed the validity of the proposed framework and helped to achieve the study objective by providing excellent analysis performance and provide insights into additional aspects of information extraction from heterogeneous data.
期刊介绍:
The International Journal of Engineering Business Management (IJEBM) is an international, peer-reviewed, open access scientific journal that aims to promote an integrated and multidisciplinary approach to engineering, business and management. The journal focuses on issues related to the design, development and implementation of new methodologies and technologies that contribute to strategic and operational improvements of organizations within the contemporary global business environment. IJEBM encourages a systematic and holistic view in order to ensure an integrated and economically, socially and environmentally friendly approach to management of new technologies in business. It aims to be a world-class research platform for academics, managers, and professionals to publish scholarly research in the global arena. All submitted articles considered suitable for the International Journal of Engineering Business Management are subjected to rigorous peer review to ensure the highest levels of quality. The review process is carried out as quickly as possible to minimize any delays in the online publication of articles. Topics of interest include, but are not limited to: -Competitive product design and innovation -Operations and manufacturing strategy -Knowledge management and knowledge innovation -Information and decision support systems -Radio Frequency Identification -Wireless Sensor Networks -Industrial engineering for business improvement -Logistics engineering and transportation -Modeling and simulation of industrial and business systems -Quality management and Six Sigma -Automation of industrial processes and systems -Manufacturing performance and productivity measurement -Supply Chain Management and the virtual enterprise network -Environmental, legal and social aspects -Technology Capital and Financial Modelling -Engineering Economics and Investment Theory -Behavioural, Social and Political factors in Engineering