Improved state stability of HfO2 ferroelectric tunnel junction by template-induced crystallization and remote scavenging for efficient in-memory reinforcement learning

S. Fujii, M. Yamaguchi, S. Kabuyanagi, K. Ota, M. Saitoh
{"title":"Improved state stability of HfO2 ferroelectric tunnel junction by template-induced crystallization and remote scavenging for efficient in-memory reinforcement learning","authors":"S. Fujii, M. Yamaguchi, S. Kabuyanagi, K. Ota, M. Saitoh","doi":"10.1109/VLSITechnology18217.2020.9265059","DOIUrl":null,"url":null,"abstract":"We investigated the effects of read current instabilities originated from depolarization field and charge trapping in HfO2 ferroelectric tunnel junctions (FTJs) on the performance of in-memory reinforcement learning. We utilized, for the first time, remote scavenging to control interfacial layer thickness, combined with template-induced crystallization to stabilize the ferroelectric phase. These are found to improve both short-term and long-term stability of memory state. Pole-cart simulation results reveal that these improvements significantly contribute to the efficiency and stability of reinforcement learning with the FTJ cross-point array.","PeriodicalId":6850,"journal":{"name":"2020 IEEE Symposium on VLSI Technology","volume":"56 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSITechnology18217.2020.9265059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We investigated the effects of read current instabilities originated from depolarization field and charge trapping in HfO2 ferroelectric tunnel junctions (FTJs) on the performance of in-memory reinforcement learning. We utilized, for the first time, remote scavenging to control interfacial layer thickness, combined with template-induced crystallization to stabilize the ferroelectric phase. These are found to improve both short-term and long-term stability of memory state. Pole-cart simulation results reveal that these improvements significantly contribute to the efficiency and stability of reinforcement learning with the FTJ cross-point array.
通过模板诱导结晶和远程清除提高HfO2铁电隧道结的状态稳定性,实现有效的内存强化学习
研究了HfO2铁电隧道结(ftj)中去极化场和电荷捕获引起的读电流不稳定性对内存强化学习性能的影响。我们首次利用远程清除来控制界面层厚度,并结合模板诱导结晶来稳定铁电相。这些都被发现可以提高记忆状态的短期和长期稳定性。杆车仿真结果表明,这些改进显著提高了FTJ交叉点阵列强化学习的效率和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信