Adaptive SRM neuron based on NbOx memristive device for neuromorphic computing

Chip Pub Date : 2022-06-01 DOI:10.1016/j.chip.2022.100015
Jing-Nan Huang , Tong Wang , He-Ming Huang , Xin Guo
{"title":"Adaptive SRM neuron based on NbOx memristive device for neuromorphic computing","authors":"Jing-Nan Huang ,&nbsp;Tong Wang ,&nbsp;He-Ming Huang ,&nbsp;Xin Guo","doi":"10.1016/j.chip.2022.100015","DOIUrl":null,"url":null,"abstract":"<div><p>The spike-response model (SRM) describes the adaptive behaviors of a biological neuron in response to repeated or prolonged stimulation, so that SRM neurons can avoid information overload and support neural networks for competitive learning. In this work, an artificial SRM neuron with the leaky integrate-and-fire (LIF) functions and the adaptive threshold is firstly implemented by the volatile memristive device of Pt/NbO<em><sub>x</sub></em>/TiN. By modulating the volatile speed of the device, the threshold of the SRM neuron is adjusted to achieve the adaptive behaviors, such as the refractory period and the lateral inhibition. To demonstrate the function of the SRM neuron, a spiking neural network (SNN) is constructed with the SRM neurons and trained by the unsupervised learning rule, which successfully classifies letters with noises, while a similar SNN with LIF neurons fails. This work demonstrates that the SRM neuron not only emulates the adaptive behaviors of a biological neuron, but also enriches the functionality and unleashes the computational power of SNNs.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"1 2","pages":"Article 100015"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472322000132/pdfft?md5=3f0a5115eb6f2edeeece240bf1444196&pid=1-s2.0-S2709472322000132-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472322000132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The spike-response model (SRM) describes the adaptive behaviors of a biological neuron in response to repeated or prolonged stimulation, so that SRM neurons can avoid information overload and support neural networks for competitive learning. In this work, an artificial SRM neuron with the leaky integrate-and-fire (LIF) functions and the adaptive threshold is firstly implemented by the volatile memristive device of Pt/NbOx/TiN. By modulating the volatile speed of the device, the threshold of the SRM neuron is adjusted to achieve the adaptive behaviors, such as the refractory period and the lateral inhibition. To demonstrate the function of the SRM neuron, a spiking neural network (SNN) is constructed with the SRM neurons and trained by the unsupervised learning rule, which successfully classifies letters with noises, while a similar SNN with LIF neurons fails. This work demonstrates that the SRM neuron not only emulates the adaptive behaviors of a biological neuron, but also enriches the functionality and unleashes the computational power of SNNs.

基于NbOx记忆装置的自适应SRM神经元神经形态计算
spike-response模型(SRM)描述了生物神经元对重复或长时间刺激的自适应行为,使SRM神经元能够避免信息过载,支持神经网络进行竞争性学习。本文首先利用Pt/NbOx/TiN易失性记忆器件实现了一个具有漏失积分与触发(LIF)功能和自适应阈值的人工SRM神经元。通过调节器件的挥发速度,调节SRM神经元的阈值,实现不应期和侧抑制等自适应行为。为了证明SRM神经元的功能,利用SRM神经元构建了一个尖峰神经网络(SNN),并使用无监督学习规则进行训练,该网络成功地对带有噪声的字母进行了分类,而使用LIF神经元的SNN则失败。这项工作表明,SRM神经元不仅模拟了生物神经元的自适应行为,而且丰富了snn的功能,释放了snn的计算能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信