Computer-aided sleep apnea diagnosis from single-lead electrocardiogram using Dual Tree Complex Wavelet Transform and spectral features

A. Hassan, M. A. Haque
{"title":"Computer-aided sleep apnea diagnosis from single-lead electrocardiogram using Dual Tree Complex Wavelet Transform and spectral features","authors":"A. Hassan, M. A. Haque","doi":"10.1109/CEEE.2015.7428289","DOIUrl":null,"url":null,"abstract":"In this work, Dual Tree Complex Wavelet Transform (DT-CWT) is introduced to devise an effective feature extraction scheme for physiological signal analysis. Unlike discrete wavelet transform- DT-CWT ensures limited redundancy and provides approximate shift invariance. To demonstrate the efficacy of DT-CWT for physiological signal analysis, it is applied in conjunction with spectral features to propound a feature extraction scheme for automatic sleep apnea screening using single-lead ECG. It is shown that spectral features can distinguish between apnea and normal ECG signals quite well. This is further confirmed by the p-values obtained by Kruskal-Wallis one-way analysis of variance and graphical analyses. Thus, spectral features in the DT-CWT domain may be used to characterize ECG signal and help the sleep research community to implement various classification models to put computerized apnea screening into clinical practice.","PeriodicalId":6490,"journal":{"name":"2015 International Conference on Electrical & Electronic Engineering (ICEEE)","volume":"160 1","pages":"49-52"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Electrical & Electronic Engineering (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEE.2015.7428289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

In this work, Dual Tree Complex Wavelet Transform (DT-CWT) is introduced to devise an effective feature extraction scheme for physiological signal analysis. Unlike discrete wavelet transform- DT-CWT ensures limited redundancy and provides approximate shift invariance. To demonstrate the efficacy of DT-CWT for physiological signal analysis, it is applied in conjunction with spectral features to propound a feature extraction scheme for automatic sleep apnea screening using single-lead ECG. It is shown that spectral features can distinguish between apnea and normal ECG signals quite well. This is further confirmed by the p-values obtained by Kruskal-Wallis one-way analysis of variance and graphical analyses. Thus, spectral features in the DT-CWT domain may be used to characterize ECG signal and help the sleep research community to implement various classification models to put computerized apnea screening into clinical practice.
双树复小波变换与频谱特征对单导联心电图睡眠呼吸暂停的计算机辅助诊断
本文引入对偶树复小波变换(DT-CWT),设计了一种有效的生理信号特征提取方案。与离散小波变换不同,DT-CWT保证了有限的冗余和近似的平移不变性。为了证明DT-CWT在生理信号分析中的有效性,将其与频谱特征相结合,提出了一种单导联心电图睡眠呼吸暂停自动筛查的特征提取方案。结果表明,频谱特征可以很好地区分呼吸暂停和正常的心电信号。通过Kruskal-Wallis单向方差分析和图形分析得到的p值进一步证实了这一点。因此,DT-CWT域的频谱特征可以用来表征心电信号,帮助睡眠研究界实现各种分类模型,将计算机化的呼吸暂停筛查应用于临床。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信