{"title":"On the dominated chromatic number of certain graphs","authors":"S. Alikhani, Mohammad R. Piri","doi":"10.22108/TOC.2020.119361.1675","DOIUrl":null,"url":null,"abstract":"Let $G$ be a simple graph. The dominated coloring of $G$ is a proper coloring of $G$ such that each color class is dominated by at least one vertex. The minimum number of colors needed for a dominated coloring of $G$ is called the dominated chromatic number of $G$, denoted by $\\chi_{dom}(G)$. Stability (bondage number) of dominated chromatic number of $G$ is the minimum number of vertices (edges) of $G$ whose removal changes the dominated chromatic number of $G$. In this paper, we study the dominated chromatic number, dominated stability and dominated bondage number of certain graphs.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2020.119361.1675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Let $G$ be a simple graph. The dominated coloring of $G$ is a proper coloring of $G$ such that each color class is dominated by at least one vertex. The minimum number of colors needed for a dominated coloring of $G$ is called the dominated chromatic number of $G$, denoted by $\chi_{dom}(G)$. Stability (bondage number) of dominated chromatic number of $G$ is the minimum number of vertices (edges) of $G$ whose removal changes the dominated chromatic number of $G$. In this paper, we study the dominated chromatic number, dominated stability and dominated bondage number of certain graphs.