Indian River Watershed Image Analysis Using Fuzzy-CA Hybrid Approach

IF 1.3 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
K. Mahata, Subhasish Das, R. Das, Anasua Sarkar
{"title":"Indian River Watershed Image Analysis Using Fuzzy-CA Hybrid Approach","authors":"K. Mahata, Subhasish Das, R. Das, Anasua Sarkar","doi":"10.4018/978-1-5225-0498-6.CH008","DOIUrl":null,"url":null,"abstract":"Image segmentation among overlapping land cover areas in satellite images is a very crucial task. Detection of belongingness is the important problem for classifying mixed pixels. This paper proposes an approach for pixel classification using a hybrid approach of Fuzzy C-Means and Cellular automata methods. This new unsupervised method is able to detect clusters using 2-Dimensional Cellular Automata model based on fuzzy segmentations. This approach detects the overlapping regions in remote sensing images by uncertainties using fuzzy set membership values. As a discrete, dynamical system, cellular automaton explores uniformly interconnected cells with states. In the second phase of our method, we utilize a 2-dimensional cellular automata to prioritize allocations of mixed pixels among overlapping land cover areas. We experiment our method on Indian Ajoy river watershed area. The clustered regions are compared with well-known FCM and K-Means methods and also with the ground truth knowledge. The results show the superiority of our new method.","PeriodicalId":54004,"journal":{"name":"International Journal of Agricultural and Environmental Information Systems","volume":"112 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agricultural and Environmental Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-0498-6.CH008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Image segmentation among overlapping land cover areas in satellite images is a very crucial task. Detection of belongingness is the important problem for classifying mixed pixels. This paper proposes an approach for pixel classification using a hybrid approach of Fuzzy C-Means and Cellular automata methods. This new unsupervised method is able to detect clusters using 2-Dimensional Cellular Automata model based on fuzzy segmentations. This approach detects the overlapping regions in remote sensing images by uncertainties using fuzzy set membership values. As a discrete, dynamical system, cellular automaton explores uniformly interconnected cells with states. In the second phase of our method, we utilize a 2-dimensional cellular automata to prioritize allocations of mixed pixels among overlapping land cover areas. We experiment our method on Indian Ajoy river watershed area. The clustered regions are compared with well-known FCM and K-Means methods and also with the ground truth knowledge. The results show the superiority of our new method.
基于模糊- ca混合方法的印度河流域图像分析
卫星图像中重叠土地覆盖区域的图像分割是一项非常关键的任务。归属检测是混合像素分类的重要问题。本文提出了一种混合模糊c均值和元胞自动机方法的像素分类方法。该方法采用基于模糊分割的二维元胞自动机模型进行聚类检测。该方法利用模糊集隶属度值的不确定性来检测遥感图像中的重叠区域。作为一个离散的动态系统,元胞自动机探索具有状态的均匀相互连接的细胞。在我们的方法的第二阶段,我们利用二维元胞自动机来优先分配重叠的土地覆盖区域之间的混合像素。我们在印度阿乔伊河流域进行了试验。将聚类区域与已知的FCM和K-Means方法以及地面真值知识进行比较。结果表明了新方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Agricultural and Environmental Information Systems
International Journal of Agricultural and Environmental Information Systems COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
6.70
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信