A detailed investigation of the model influencing parameters of the phase-field fracture approach

Q1 Mathematics
Carola Bilgen, Alena Kopaničáková, Rolf Krause, Kerstin Weinberg
{"title":"A detailed investigation of the model influencing parameters of the phase-field fracture approach","authors":"Carola Bilgen,&nbsp;Alena Kopaničáková,&nbsp;Rolf Krause,&nbsp;Kerstin Weinberg","doi":"10.1002/gamm.202000005","DOIUrl":null,"url":null,"abstract":"<p>Phase-field approaches to fracture are gaining popularity to compute a priori unknown crack paths. In this work the sensitivity of such phase-field approaches with respect to its model specific parameters, that is, the critical length of regularization, the degradation function and the mobility, is investigated. The susceptibility of the computed cracks to the setting of these parameters is studied for problems of linear and finite elasticity. Furthermore, the convergence properties of different solution strategies are analyzed. Monolithic and staggered solution schemes for the solution of the arising nonlinear discrete systems are studied in detail. To conclude, we demonstrate the versatility of the phase-field fracture approach in a real-world problem by comparing different simulations of conchoidal fracture using structured and unstructured meshes.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"43 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/gamm.202000005","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202000005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

Abstract

Phase-field approaches to fracture are gaining popularity to compute a priori unknown crack paths. In this work the sensitivity of such phase-field approaches with respect to its model specific parameters, that is, the critical length of regularization, the degradation function and the mobility, is investigated. The susceptibility of the computed cracks to the setting of these parameters is studied for problems of linear and finite elasticity. Furthermore, the convergence properties of different solution strategies are analyzed. Monolithic and staggered solution schemes for the solution of the arising nonlinear discrete systems are studied in detail. To conclude, we demonstrate the versatility of the phase-field fracture approach in a real-world problem by comparing different simulations of conchoidal fracture using structured and unstructured meshes.

Abstract Image

详细研究了相场断裂方法的影响参数模型
相场断裂分析方法在计算先验未知裂纹路径方面越来越受欢迎。在这项工作中,研究了这种相场方法相对于其模型特定参数的灵敏度,即正则化的临界长度,退化函数和迁移率。针对线弹性和有限弹性问题,研究了计算裂纹对这些参数设置的敏感性。进一步分析了不同解策略的收敛性。详细研究了非线性离散系统的整体解和交错解方案。最后,我们通过比较使用结构化和非结构化网格的不同贝壳状裂缝模拟,证明了相场压裂方法在现实问题中的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信