A Probabilistic Approach to the Dichotomy Problem

IF 1.6 3区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Tomasz Łuczak, J. N. caron, etr caron, il
{"title":"A Probabilistic Approach to the Dichotomy Problem","authors":"Tomasz Łuczak, J. N. caron, etr caron, il","doi":"10.1137/S0097539703435492","DOIUrl":null,"url":null,"abstract":"Let ${\\mathcal R}(n,k)$ denote the random $k$-ary relation defined on the set $[n]=\\{1,2,\\dots,n\\}$. We show that the probability that $([n], {\\mathcal R}(n,k))$ is projective tends to one, as either $n$ or $k$ tends to infinity. This result implies that for most relational systems $(B,{{\\underline{R}}})$ the ${{\\textrm{CSP}}}(B,{{\\underline{R}}})$ problem is NP-complete (and thus that the dichotomy conjecture holds with probability 1), and confirms a conjecture of Rosenberg [I. G. Rosenberg, Rocky Mountain J. Math., 3 (1973), pp. 631-639].","PeriodicalId":49532,"journal":{"name":"SIAM Journal on Computing","volume":"23 1","pages":"835-843"},"PeriodicalIF":1.6000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1137/S0097539703435492","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 15

Abstract

Let ${\mathcal R}(n,k)$ denote the random $k$-ary relation defined on the set $[n]=\{1,2,\dots,n\}$. We show that the probability that $([n], {\mathcal R}(n,k))$ is projective tends to one, as either $n$ or $k$ tends to infinity. This result implies that for most relational systems $(B,{{\underline{R}}})$ the ${{\textrm{CSP}}}(B,{{\underline{R}}})$ problem is NP-complete (and thus that the dichotomy conjecture holds with probability 1), and confirms a conjecture of Rosenberg [I. G. Rosenberg, Rocky Mountain J. Math., 3 (1973), pp. 631-639].
二分类问题的概率方法
设${\mathcal R}(n,k)$表示在集合$[n]=\{1,2,\dots,n\}$上定义的随机的$k$ -ary关系。我们证明$([n], {\mathcal R}(n,k))$是射影的概率趋向于1,因为$n$或$k$趋向于无穷大。这一结果表明,对于大多数关系系统$(B,{{\underline{R}}})$, ${{\textrm{CSP}}}(B,{{\underline{R}}})$问题是np完全的(因此二分猜想以概率1成立),并证实了Rosenberg [I]的一个猜想。罗基山J.数学。, 3(1973),第631-639页。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Journal on Computing
SIAM Journal on Computing 工程技术-计算机:理论方法
CiteScore
4.60
自引率
0.00%
发文量
68
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Computing aims to provide coverage of the most significant work going on in the mathematical and formal aspects of computer science and nonnumerical computing. Submissions must be clearly written and make a significant technical contribution. Topics include but are not limited to analysis and design of algorithms, algorithmic game theory, data structures, computational complexity, computational algebra, computational aspects of combinatorics and graph theory, computational biology, computational geometry, computational robotics, the mathematical aspects of programming languages, artificial intelligence, computational learning, databases, information retrieval, cryptography, networks, distributed computing, parallel algorithms, and computer architecture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信