Reinforcement learning with dynamic convex risk measures

IF 1.6 3区 经济学 Q3 BUSINESS, FINANCE
Anthony Coache, Sebastian Jaimungal
{"title":"Reinforcement learning with dynamic convex risk measures","authors":"Anthony Coache,&nbsp;Sebastian Jaimungal","doi":"10.1111/mafi.12388","DOIUrl":null,"url":null,"abstract":"<p>We develop an approach for solving time-consistent risk-sensitive stochastic optimization problems using model-free reinforcement learning (RL). Specifically, we assume agents assess the risk of a sequence of random variables using dynamic convex risk measures. We employ a time-consistent dynamic programming principle to determine the value of a particular policy, and develop policy gradient update rules that aid in obtaining optimal policies. We further develop an actor–critic style algorithm using neural networks to optimize over policies. Finally, we demonstrate the performance and flexibility of our approach by applying it to three optimization problems: statistical arbitrage trading strategies, financial hedging, and obstacle avoidance robot control.</p>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12388","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12388","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We develop an approach for solving time-consistent risk-sensitive stochastic optimization problems using model-free reinforcement learning (RL). Specifically, we assume agents assess the risk of a sequence of random variables using dynamic convex risk measures. We employ a time-consistent dynamic programming principle to determine the value of a particular policy, and develop policy gradient update rules that aid in obtaining optimal policies. We further develop an actor–critic style algorithm using neural networks to optimize over policies. Finally, we demonstrate the performance and flexibility of our approach by applying it to three optimization problems: statistical arbitrage trading strategies, financial hedging, and obstacle avoidance robot control.

Abstract Image

动态凸风险度量的强化学习
我们开发了一种利用无模型强化学习(RL)解决时间一致性风险敏感随机优化问题的方法。具体来说,我们假设代理使用动态凸风险度量来评估随机变量序列的风险。我们采用时间一致的动态编程原理来确定特定政策的价值,并开发了有助于获得最佳政策的政策梯度更新规则。我们还进一步开发了一种使用神经网络对政策进行优化的演员批评式算法。最后,我们将我们的方法应用于三个优化问题,展示了它的性能和灵活性:统计套利交易策略、金融对冲和避障机器人控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Finance
Mathematical Finance 数学-数学跨学科应用
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems. The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信