Fast computation of sine/cosine series coefficients of associated Legendre function of arbitrary high degree and order

IF 0.9 Q4 REMOTE SENSING
T. Fukushima
{"title":"Fast computation of sine/cosine series coefficients of associated Legendre function of arbitrary high degree and order","authors":"T. Fukushima","doi":"10.1515/jogs-2018-0017","DOIUrl":null,"url":null,"abstract":"Abstract In order to accelerate the spherical/spheroidal harmonic synthesis of any function, we developed a new recursive method to compute the sine/cosine series coefficient of the 4π fully- and Schmidt quasi-normalized associated Legendre functions. The key of the method is a set of increasing-degree/order mixed-wavenumber two to four-term recurrence formulas to compute the diagonal terms. They are used in preparing the seed values of the decreasing-order fixed-degree, and fixed-wavenumber two- and three-term recurrence formulas, which are obtained by modifying the classic relations. The new method is accurate and capable to deal with an arbitrary high degree/ order/wavenumber. Also, it runs significantly faster than the previous method of ours utilizing the Wigner d function, say around 20 times more when the maximum degree exceeds 1,000.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodetic Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jogs-2018-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In order to accelerate the spherical/spheroidal harmonic synthesis of any function, we developed a new recursive method to compute the sine/cosine series coefficient of the 4π fully- and Schmidt quasi-normalized associated Legendre functions. The key of the method is a set of increasing-degree/order mixed-wavenumber two to four-term recurrence formulas to compute the diagonal terms. They are used in preparing the seed values of the decreasing-order fixed-degree, and fixed-wavenumber two- and three-term recurrence formulas, which are obtained by modifying the classic relations. The new method is accurate and capable to deal with an arbitrary high degree/ order/wavenumber. Also, it runs significantly faster than the previous method of ours utilizing the Wigner d function, say around 20 times more when the maximum degree exceeds 1,000.
快速计算任意高阶相关勒让德函数的正弦/余弦级数系数
摘要为了加速任意函数的球/球谐合成,提出了一种新的递推方法来计算4π完全和Schmidt拟归一化相关Legendre函数的正弦/余弦级数系数。该方法的关键是一组增加次/阶混合波数的二至四项递推公式来计算对角项。它们被用于制备通过修正经典关系得到的降阶定次、定波数二项和三项递推公式的种子值。新方法精度高,能处理任意高次/高阶/高波数。此外,它比我们之前使用Wigner d函数的方法运行得快得多,当最大度超过1000时,运行速度大约快20倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geodetic Science
Journal of Geodetic Science REMOTE SENSING-
CiteScore
1.90
自引率
7.70%
发文量
3
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信