Wen-jing ZHANG , Ya-nan CHENG , Jiao KONG , Mei-jun WANG , Li-ping CHANG , Wei-ren BAO
{"title":"Effects of active hydrogen and oxygen on organic sulfur transformation behavior during pyrolysis of high sulfur coal: A review","authors":"Wen-jing ZHANG , Ya-nan CHENG , Jiao KONG , Mei-jun WANG , Li-ping CHANG , Wei-ren BAO","doi":"10.1016/S1872-5813(21)60198-6","DOIUrl":null,"url":null,"abstract":"<div><p>With consumption of high quality coal resources, clean and efficient conversion of high sulfur coal has attracted much attention, and especially the regulation of organic sulfur in high sulfur coking coal is very important. During pyrolysis transformation of organic sulfur in coal begins with cleavage of C–S bonds in the macromolecular structure of coal and stabilization of sulfur-containing free radicals, and active hydrogen/oxygen is an important factor affecting the transformation behavior of organic sulfur. It is found that, during coal pyrolysis under hydrogen-enriched or oxygen-enriched atmosphere or co-pyrolysis with biomass or oxygen-containing organic matter, the active hydrogen/oxygen in the system can weaken C–S bonds of organic sulfur, and promote their cleavage, timely combination with the generated sulfur-containing free radicals. This can promote sulfur in coal transform to the gas phase and reduce the secondary reaction of sulfur-containing free radicals with coal matrix. At the same time, during co-pyrolysis of high volatile and high sulfur coals, the relatively abundant active hydrogen/oxygen in volatile will also affect the organic sulfur transformation behavior in high sulfur coal, and reduce the sulfur content in coke, which provides a theoretical basis for directional regulation of sulfur in coal.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"50 6","pages":"Pages 652-663"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581321601986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 2
Abstract
With consumption of high quality coal resources, clean and efficient conversion of high sulfur coal has attracted much attention, and especially the regulation of organic sulfur in high sulfur coking coal is very important. During pyrolysis transformation of organic sulfur in coal begins with cleavage of C–S bonds in the macromolecular structure of coal and stabilization of sulfur-containing free radicals, and active hydrogen/oxygen is an important factor affecting the transformation behavior of organic sulfur. It is found that, during coal pyrolysis under hydrogen-enriched or oxygen-enriched atmosphere or co-pyrolysis with biomass or oxygen-containing organic matter, the active hydrogen/oxygen in the system can weaken C–S bonds of organic sulfur, and promote their cleavage, timely combination with the generated sulfur-containing free radicals. This can promote sulfur in coal transform to the gas phase and reduce the secondary reaction of sulfur-containing free radicals with coal matrix. At the same time, during co-pyrolysis of high volatile and high sulfur coals, the relatively abundant active hydrogen/oxygen in volatile will also affect the organic sulfur transformation behavior in high sulfur coal, and reduce the sulfur content in coke, which provides a theoretical basis for directional regulation of sulfur in coal.
期刊介绍:
Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.