Enhancing side chain swing ability by novel all-carbon twisted backbone for high performance anion exchange membrane at relatively low IEC level

IF 4.9 Q1 ENGINEERING, CHEMICAL
Huaqing Zhang, Yang Zhang, Fan Zhang, Xiaolin Ge, Wanjie Song, Chengpeng Wei, Liang Wu, Tongwen Xu
{"title":"Enhancing side chain swing ability by novel all-carbon twisted backbone for high performance anion exchange membrane at relatively low IEC level","authors":"Huaqing Zhang,&nbsp;Yang Zhang,&nbsp;Fan Zhang,&nbsp;Xiaolin Ge,&nbsp;Wanjie Song,&nbsp;Chengpeng Wei,&nbsp;Liang Wu,&nbsp;Tongwen Xu","doi":"10.1016/j.memlet.2021.100007","DOIUrl":null,"url":null,"abstract":"<div><p>A novel all-carbon backbone-based membrane is designed by introducing side chains at the non-coplanar site of twisted “ether-free” main chain via Suzuki coupling reaction. The twisted backbone reduces the hindrance effect, providing broader mobile space for the side chains and enhancing the swing ability of the side chains to facilitate the formation of ion channels and the transportation of OH<sup>−</sup>. As a result, the high conductivity is obtained at a relatively low IEC level. The QPS-PB-4 membrane exhibits a superior OH<sup>−</sup> conductivity of 50.1 to 94.4 mS cm<sup>−1</sup> at 30 ℃ to 80 ℃ with an IEC of only 1.48 mmol <em>g</em><sup>−1</sup>, and a low swelling ratio of less than 10%. Which show significant advantage among the traditional side-chain-type AEMs reported in recent years. Moreover, the as-prepared membranes have good mechanical and thermal stability, as well as excellent chemical stability because of the all-carbon backbone designed without any sensitive sites that can be attacked by hydroxide. The conductivity of the QPS-PB-4 membrane decrease by only 8% after treatment at 80 ℃ in 1 M NaOH for 1800 h. The fuel cell assembled with the as-prepared membrane has a peak power density of up to 558.8 mW cm<sup>−</sup>², indicating the promising application potential of the membranes.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421221000076/pdfft?md5=28842818e816ef95f1d97f90c4dccc07&pid=1-s2.0-S2772421221000076-main.pdf","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772421221000076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 10

Abstract

A novel all-carbon backbone-based membrane is designed by introducing side chains at the non-coplanar site of twisted “ether-free” main chain via Suzuki coupling reaction. The twisted backbone reduces the hindrance effect, providing broader mobile space for the side chains and enhancing the swing ability of the side chains to facilitate the formation of ion channels and the transportation of OH. As a result, the high conductivity is obtained at a relatively low IEC level. The QPS-PB-4 membrane exhibits a superior OH conductivity of 50.1 to 94.4 mS cm−1 at 30 ℃ to 80 ℃ with an IEC of only 1.48 mmol g−1, and a low swelling ratio of less than 10%. Which show significant advantage among the traditional side-chain-type AEMs reported in recent years. Moreover, the as-prepared membranes have good mechanical and thermal stability, as well as excellent chemical stability because of the all-carbon backbone designed without any sensitive sites that can be attacked by hydroxide. The conductivity of the QPS-PB-4 membrane decrease by only 8% after treatment at 80 ℃ in 1 M NaOH for 1800 h. The fuel cell assembled with the as-prepared membrane has a peak power density of up to 558.8 mW cm², indicating the promising application potential of the membranes.

Abstract Image

新型全碳扭曲骨架在低IEC条件下增强高性能阴离子交换膜侧链摆动能力
通过Suzuki偶联反应在扭曲的“无醚”主链的非共面位置引入侧链,设计了一种新型的全碳骨架基膜。扭曲的主链减少了阻碍作用,为侧链提供了更广阔的移动空间,增强了侧链的摆动能力,有利于离子通道的形成和OH−的运输。因此,在相对较低的IEC水平下获得了高导电性。QPS-PB-4膜在30 ~ 80℃时具有50.1 ~ 94.4 mS cm−1的OH -电导率,IEC仅为1.48 mmol g−1,溶胀率小于10%。与近年来报道的传统侧链型AEMs相比,具有明显的优势。此外,制备的膜具有良好的机械稳定性和热稳定性,并且由于全碳主链设计没有任何可被氢氧化物攻击的敏感位点,因此具有优异的化学稳定性。制备的QPS-PB-4膜在1 M NaOH条件下,经80℃处理1800 h后,其电导率仅下降了8%,制备的燃料电池的峰值功率密度高达558.8 mW cm−2,具有良好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信