{"title":"Raman Spectroscopy for Quantitative Analysis of Point Defects and Defect Clusters in Irradiated Graphite","authors":"K. Niwase","doi":"10.1155/2012/197609","DOIUrl":null,"url":null,"abstract":"We report the development of Raman spectroscopy as a powerful tool for quantitative analysis of point defect and defect clusters in irradiated graphite. Highly oriented pyrolytic graphite (HOPG) was irradiated by 25 keV He","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"22 1","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/197609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Abstract
We report the development of Raman spectroscopy as a powerful tool for quantitative analysis of point defect and defect clusters in irradiated graphite. Highly oriented pyrolytic graphite (HOPG) was irradiated by 25 keV He