{"title":"Sum Rate Maximization-based Fair Power Allocation in Downlink NOMA Networks","authors":"M. Abd-Elnaby","doi":"10.32604/cmc.2022.022020","DOIUrl":null,"url":null,"abstract":": Non-orthogonal multiple access (NOMA) has been seen as a promising technology for 5G communication. The performance optimization of NOMA systems depends on both power allocation (PA) and user pairing (UP). Most existing researches provide sub-optimal solutions with high computational complexity for PA problem and mainly focuses on maximizing the sum rate (capacity) without considering the fairness performance. Also, the joint optimization of PA and UP needs an exhaustive search. The main contribution of this paper is the proposing of a novel capacity maximization-based fair power allocation (CMFPA) with low-complexity in downlink NOMA. Extensive investigation and analysis of the joint impact of signal to noise ratio (SNR) per subcarrier and the channel gains of the paired users on the performance of NOMA in terms of the capacity and the user fairness is presented. Next, a closed-form equation for the power allocation coefficient of CMFPA as a function of SNR, and the channel gains of the paired users is provided. In addition, to jointly optimize UP and PA in NOMA systems an efficient low-complexity UP (ELCUP) method is proposed to be incorporated with the proposed CMFPA to compromise the proposed joint resource allocation (JRA). Simulation results demonstrate that the proposed CMFPA can improve the capacity and fairness performance of existing UP methods, such as conventional UP, and random UP methods. Furthermore, the simulation results show that the proposed JRA significantly outperforms the existing schemes and gives a near-optimal performance.","PeriodicalId":10440,"journal":{"name":"Cmc-computers Materials & Continua","volume":"29 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cmc-computers Materials & Continua","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32604/cmc.2022.022020","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
: Non-orthogonal multiple access (NOMA) has been seen as a promising technology for 5G communication. The performance optimization of NOMA systems depends on both power allocation (PA) and user pairing (UP). Most existing researches provide sub-optimal solutions with high computational complexity for PA problem and mainly focuses on maximizing the sum rate (capacity) without considering the fairness performance. Also, the joint optimization of PA and UP needs an exhaustive search. The main contribution of this paper is the proposing of a novel capacity maximization-based fair power allocation (CMFPA) with low-complexity in downlink NOMA. Extensive investigation and analysis of the joint impact of signal to noise ratio (SNR) per subcarrier and the channel gains of the paired users on the performance of NOMA in terms of the capacity and the user fairness is presented. Next, a closed-form equation for the power allocation coefficient of CMFPA as a function of SNR, and the channel gains of the paired users is provided. In addition, to jointly optimize UP and PA in NOMA systems an efficient low-complexity UP (ELCUP) method is proposed to be incorporated with the proposed CMFPA to compromise the proposed joint resource allocation (JRA). Simulation results demonstrate that the proposed CMFPA can improve the capacity and fairness performance of existing UP methods, such as conventional UP, and random UP methods. Furthermore, the simulation results show that the proposed JRA significantly outperforms the existing schemes and gives a near-optimal performance.
期刊介绍:
This journal publishes original research papers in the areas of computer networks, artificial intelligence, big data management, software engineering, multimedia, cyber security, internet of things, materials genome, integrated materials science, data analysis, modeling, and engineering of designing and manufacturing of modern functional and multifunctional materials.
Novel high performance computing methods, big data analysis, and artificial intelligence that advance material technologies are especially welcome.