CAYLEY–ABELS GRAPHS AND INVARIANTS OF TOTALLY DISCONNECTED, LOCALLY COMPACT GROUPS

IF 0.5 4区 数学 Q3 MATHEMATICS
Arnbjörg Soffía Árnadóttir, Waltraud Lederle, R. G. Möller
{"title":"CAYLEY–ABELS GRAPHS AND INVARIANTS OF TOTALLY DISCONNECTED, LOCALLY COMPACT GROUPS","authors":"Arnbjörg Soffía Árnadóttir, Waltraud Lederle, R. G. Möller","doi":"10.1017/S1446788722000040","DOIUrl":null,"url":null,"abstract":"Abstract A connected, locally finite graph \n$\\Gamma $\n is a Cayley–Abels graph for a totally disconnected, locally compact group G if G acts vertex-transitively on \n$\\Gamma $\n with compact, open vertex stabilizers. Define the minimal degree of G as the minimal degree of a Cayley–Abels graph of G. We relate the minimal degree in various ways to the modular function, the scale function and the structure of compact open subgroups. As an application, we prove that if \n$T_{d}$\n denotes the d-regular tree, then the minimal degree of \n$\\mathrm{Aut}(T_{d})$\n is d for all \n$d\\geq 2$\n .","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"44 1","pages":"145 - 177"},"PeriodicalIF":0.5000,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S1446788722000040","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract A connected, locally finite graph $\Gamma $ is a Cayley–Abels graph for a totally disconnected, locally compact group G if G acts vertex-transitively on $\Gamma $ with compact, open vertex stabilizers. Define the minimal degree of G as the minimal degree of a Cayley–Abels graph of G. We relate the minimal degree in various ways to the modular function, the scale function and the structure of compact open subgroups. As an application, we prove that if $T_{d}$ denotes the d-regular tree, then the minimal degree of $\mathrm{Aut}(T_{d})$ is d for all $d\geq 2$ .
完全不连通局部紧群的cayley -标签图与不变量
一个连通的局部有限图$\Gamma $是一个完全不连通的局部紧致群G的Cayley-Abels图,如果G以紧致的开顶点稳定子顶点传递作用于$\Gamma $。将G的最小度定义为G的Cayley-Abels图的最小度,并以不同的方式将G的最小度与模函数、尺度函数和紧开子群的结构联系起来。作为一个应用,我们证明了如果$T_{d}$表示d正则树,那么对于所有$d\geq 2$, $\mathrm{Aut}(T_{d})$的最小度为d。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信