CLT construction without weather protection requires extensive moisture control

IF 1.8 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
L. Olsson
{"title":"CLT construction without weather protection requires extensive moisture control","authors":"L. Olsson","doi":"10.1177/1744259121996388","DOIUrl":null,"url":null,"abstract":"This study examines how cross-laminated timber (CLT) constructions, including joints, connections and attachment points, are affected by precipitation during construction. The case studies are based on moisture content measurements and material sampling as well as microbiological analysis during the structure’s construction stage. The study does not include remediation control. The field measurements show microbiological growth in all buildings and almost all floor structures that were investigated. Of a total of 200 measuring points analysed, half had mould growth and around a third had moderate or extensive growth. The moisture content measurements for one of the locations with the largest percentage of elevated or high moisture content was at the top of the floor structure in the bottom gap between timbers in the CLT top layer. This is one example of several materials or construction components where there is limited possibility of dry out. Based on the outcome, it would appear difficult, or impossible, to avoid the appearance of microbial growth during construction with CLT without weather protection. Previous studies indicate that microbiological analysis of CLT is extremely rare in both laboratory and field studies, which implies that there are obvious shortcomings in the scientific work. The fact that mould growth is often invisible needs to be disseminated, especially in practical studies. However, there seems to be a good level of awareness in the literature that theoretical studies often conduct mould growth risk evaluations. There do not appear to be any moisture safety assembly methods or solutions for CLT construction that do not have weather protection or a declaration of the critical moisture conditions for CLT products.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"121 1","pages":"5 - 35"},"PeriodicalIF":1.8000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Physics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1744259121996388","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

This study examines how cross-laminated timber (CLT) constructions, including joints, connections and attachment points, are affected by precipitation during construction. The case studies are based on moisture content measurements and material sampling as well as microbiological analysis during the structure’s construction stage. The study does not include remediation control. The field measurements show microbiological growth in all buildings and almost all floor structures that were investigated. Of a total of 200 measuring points analysed, half had mould growth and around a third had moderate or extensive growth. The moisture content measurements for one of the locations with the largest percentage of elevated or high moisture content was at the top of the floor structure in the bottom gap between timbers in the CLT top layer. This is one example of several materials or construction components where there is limited possibility of dry out. Based on the outcome, it would appear difficult, or impossible, to avoid the appearance of microbial growth during construction with CLT without weather protection. Previous studies indicate that microbiological analysis of CLT is extremely rare in both laboratory and field studies, which implies that there are obvious shortcomings in the scientific work. The fact that mould growth is often invisible needs to be disseminated, especially in practical studies. However, there seems to be a good level of awareness in the literature that theoretical studies often conduct mould growth risk evaluations. There do not appear to be any moisture safety assembly methods or solutions for CLT construction that do not have weather protection or a declaration of the critical moisture conditions for CLT products.
没有天气保护的CLT建筑需要广泛的湿度控制
本研究考察了交叉层压木材(CLT)结构,包括接缝,连接和附着点,在施工过程中如何受到降水的影响。案例研究基于结构施工阶段的水分含量测量和材料取样以及微生物分析。该研究不包括补救控制。实地测量显示,在所调查的所有建筑物和几乎所有地板结构中都有微生物生长。在分析的总共200个测量点中,一半有霉菌生长,大约三分之一有中度或广泛的生长。含水率升高或高含水率百分比最大的位置之一是在CLT顶层木材之间底部间隙的地板结构顶部。这是几种材料或建筑部件干燥可能性有限的一个例子。根据结果,在没有天气保护的CLT施工期间避免微生物生长的出现似乎是困难的,或者是不可能的。以往的研究表明,CLT的微生物学分析在实验室和现场研究中都极为罕见,这意味着科学工作存在明显的不足。霉菌生长往往是看不见的,这一事实需要传播,特别是在实际研究中。然而,在文献中似乎有一个很好的认识,理论研究经常进行霉菌生长风险评估。似乎没有任何湿度安全组装方法或解决方案的CLT结构,没有天气保护或CLT产品的关键湿度条件的声明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Building Physics
Journal of Building Physics 工程技术-结构与建筑技术
CiteScore
5.10
自引率
15.00%
发文量
10
审稿时长
5.3 months
期刊介绍: Journal of Building Physics (J. Bldg. Phys) is an international, peer-reviewed journal that publishes a high quality research and state of the art “integrated” papers to promote scientifically thorough advancement of all the areas of non-structural performance of a building and particularly in heat, air, moisture transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信