Periodic Poling of X-Cut Thin-Film Lithium Niobate: The Route to Submicrometer Periods

M. Rüsing, M. Roeper, Z. Amber, B. Kirbus, L. Eng, J. Zhao, S. Mookherjea
{"title":"Periodic Poling of X-Cut Thin-Film Lithium Niobate: The Route to Submicrometer Periods","authors":"M. Rüsing, M. Roeper, Z. Amber, B. Kirbus, L. Eng, J. Zhao, S. Mookherjea","doi":"10.1109/IFCS-ISAF41089.2020.9234870","DOIUrl":null,"url":null,"abstract":"Ultra-short poling periods of $1\\ \\mu \\mathrm{m}$ and below in lithium niobate will allow nonlinear optical devices with operation to the UV regime or narrow-band counter-propagating single-photon generation. However, fabrication of such periods in bulk Lithium Niobate penetrating the complete modal areas of waveguides has been challenging. In this work, we demonstrate the fabrication of periodic domain grids with submicrometer periodicity in 300 nm x-cut thin-film lithium niobate. The poling was achieved through application of a single, shaped electrical pulse and electrodes fabricated with a combination of electron-and direct laser-writing lithography. The poling results were investigated with piezo-response force microscopy and second-harmonic microcopy and indicate the poled domains to penetrate fully across the complete film thickness. This will enable the fabrication of novel nonlinear optical devices combining the high efficiency of thin films with ultra-short domain periods.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"21 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ultra-short poling periods of $1\ \mu \mathrm{m}$ and below in lithium niobate will allow nonlinear optical devices with operation to the UV regime or narrow-band counter-propagating single-photon generation. However, fabrication of such periods in bulk Lithium Niobate penetrating the complete modal areas of waveguides has been challenging. In this work, we demonstrate the fabrication of periodic domain grids with submicrometer periodicity in 300 nm x-cut thin-film lithium niobate. The poling was achieved through application of a single, shaped electrical pulse and electrodes fabricated with a combination of electron-and direct laser-writing lithography. The poling results were investigated with piezo-response force microscopy and second-harmonic microcopy and indicate the poled domains to penetrate fully across the complete film thickness. This will enable the fabrication of novel nonlinear optical devices combining the high efficiency of thin films with ultra-short domain periods.
x切割铌酸锂薄膜的周期性极化:通往亚微米周期的途径
在铌酸锂中,$1\ \mu \ mathm {m}$及以下的超短极化周期将允许非线性光学器件在紫外区或窄带反传播单光子产生下工作。然而,在穿透波导的整个模态区域的大块铌酸锂中制造这样的周期是具有挑战性的。在这项工作中,我们展示了在300 nm x切割铌酸锂薄膜上制造具有亚微米周期性的周期性域网格。该电极是通过应用一个单一的、形状的电脉冲和结合电子和直接激光书写光刻技术制造的电极来实现的。利用压电响应力显微镜和二次谐波显微镜对极化结果进行了研究,结果表明极化畴完全穿透了整个薄膜厚度。这将使新型非线性光学器件的制造结合薄膜的高效率和超短的域周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信