Improving multiview face detection with multi-task deep convolutional neural networks

Cha Zhang, Zhengyou Zhang
{"title":"Improving multiview face detection with multi-task deep convolutional neural networks","authors":"Cha Zhang, Zhengyou Zhang","doi":"10.1109/WACV.2014.6835990","DOIUrl":null,"url":null,"abstract":"Multiview face detection is a challenging problem due to dramatic appearance changes under various pose, illumination and expression conditions. In this paper, we present a multi-task deep learning scheme to enhance the detection performance. More specifically, we build a deep convolutional neural network that can simultaneously learn the face/nonface decision, the face pose estimation problem, and the facial landmark localization problem. We show that such a multi-task learning scheme can further improve the classifier's accuracy. On the challenging FDDB data set, our detector achieves over 3% improvement in detection rate at the same false positive rate compared with other state-of-the-art methods.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"15 1","pages":"1036-1041"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"203","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6835990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 203

Abstract

Multiview face detection is a challenging problem due to dramatic appearance changes under various pose, illumination and expression conditions. In this paper, we present a multi-task deep learning scheme to enhance the detection performance. More specifically, we build a deep convolutional neural network that can simultaneously learn the face/nonface decision, the face pose estimation problem, and the facial landmark localization problem. We show that such a multi-task learning scheme can further improve the classifier's accuracy. On the challenging FDDB data set, our detector achieves over 3% improvement in detection rate at the same false positive rate compared with other state-of-the-art methods.
用多任务深度卷积神经网络改进多视图人脸检测
多视角人脸检测是一个具有挑战性的问题,因为在不同的姿势、光照和表情条件下,人脸的外观会发生巨大的变化。在本文中,我们提出了一种多任务深度学习方案来提高检测性能。更具体地说,我们构建了一个可以同时学习人脸/非人脸决策、人脸姿态估计问题和人脸地标定位问题的深度卷积神经网络。我们证明了这种多任务学习方案可以进一步提高分类器的准确率。在具有挑战性的FDDB数据集上,与其他最先进的方法相比,我们的检测器在相同的误报率下实现了超过3%的检测率提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信