Fabrication of Nanowires Using Glancing Angle Deposition

IF 1 Q4 ENGINEERING, MANUFACTURING
C. Qu, S. Mcnamara, K. Walsh
{"title":"Fabrication of Nanowires Using Glancing Angle Deposition","authors":"C. Qu, S. Mcnamara, K. Walsh","doi":"10.1115/msec2022-83719","DOIUrl":null,"url":null,"abstract":"\n This paper introduces the fabrication of wafer-long nanowires using glancing angle deposition (GLAD). GLAD is an advanced physical vapor deposition technique, and it has the unique advantage of creating three-dimensional nanofeature arrays, compared to conventional top-down nanofabrication techniques. Various nanofeatures created by GLAD have been reported, including pillars, springs, chevrons, ribbons, and those structures as templates for creating nanoporous membranes; this paper fills the gap by presenting the creation of nanowires by GLAD. This paper describes the fabrication process by introducing the seeding scheme of corrals. The seed design for GLAD adopts the design rules of corrals of line seeds, and the GLAD parameters are determined by the design of the corrals of line seeds. In the experiment, conventional photolithography is used for creating micro-level widths and heights and wafer-length of line seed corrals. Two GLAD sessions with the target material for the nanowires and the mask material are deposited on the substrate in sequence with different azimuth angles; the nanowires are obtainable by anisotropic etching and removal of the sacrificial layer of corrals of line seeds. The design of the corrals of line seeds and the control of the size of the nanowires are discussed. The nanowires created are potentially applied in sensing applications, for example, the palladium or platinum nanowires can be used for hydrogen sensing.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-83719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces the fabrication of wafer-long nanowires using glancing angle deposition (GLAD). GLAD is an advanced physical vapor deposition technique, and it has the unique advantage of creating three-dimensional nanofeature arrays, compared to conventional top-down nanofabrication techniques. Various nanofeatures created by GLAD have been reported, including pillars, springs, chevrons, ribbons, and those structures as templates for creating nanoporous membranes; this paper fills the gap by presenting the creation of nanowires by GLAD. This paper describes the fabrication process by introducing the seeding scheme of corrals. The seed design for GLAD adopts the design rules of corrals of line seeds, and the GLAD parameters are determined by the design of the corrals of line seeds. In the experiment, conventional photolithography is used for creating micro-level widths and heights and wafer-length of line seed corrals. Two GLAD sessions with the target material for the nanowires and the mask material are deposited on the substrate in sequence with different azimuth angles; the nanowires are obtainable by anisotropic etching and removal of the sacrificial layer of corrals of line seeds. The design of the corrals of line seeds and the control of the size of the nanowires are discussed. The nanowires created are potentially applied in sensing applications, for example, the palladium or platinum nanowires can be used for hydrogen sensing.
掠角沉积法制备纳米线
本文介绍了用掠角沉积法(GLAD)制备长片纳米线的方法。GLAD是一种先进的物理气相沉积技术,与传统的自上而下的纳米制造技术相比,它在创建三维纳米特征阵列方面具有独特的优势。由GLAD创建的各种纳米特征已被报道,包括柱状、弹簧状、线形、带状和那些作为创建纳米孔膜模板的结构;这篇论文填补了这一空白,展示了GLAD公司制造纳米线的成果。本文通过介绍畜栏的播种方案,阐述了畜栏的制作过程。GLAD种子设计采用线路种子圈的设计规则,GLAD参数由线路种子圈的设计确定。在实验中,常规光刻技术用于创建线种子圈的微级宽度、高度和晶圆长度。将纳米线的靶材料和掩膜材料按不同方位角顺序沉积在衬底上;通过各向异性蚀刻和去除线种子圈的牺牲层,可以获得纳米线。讨论了线种圈的设计和纳米线尺寸的控制。所创造的纳米线有可能应用于传感应用,例如,钯或铂纳米线可用于氢传感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Micro and Nano-Manufacturing
Journal of Micro and Nano-Manufacturing ENGINEERING, MANUFACTURING-
CiteScore
2.70
自引率
0.00%
发文量
12
期刊介绍: The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信