Yuanyuan Guo, Yanhui Cao, Junda Lu, Xuerong Zheng, Yida Deng
{"title":"The concept, structure, and progress of seawater metal-air batteries","authors":"Yuanyuan Guo, Yanhui Cao, Junda Lu, Xuerong Zheng, Yida Deng","doi":"10.20517/microstructures.2023.30","DOIUrl":null,"url":null,"abstract":"Seawater metal-air batteries (SMABs) are promising energy storage technologies for their advantages of high energy density, intrinsic safety, and low cost. However, the presence of such chloride ions complex components in seawater inevitably has complex effects on the air electrode process, including oxygen reduction and oxygen evolution reactions (ORR and OER), which requires the development of highly-active chloride-resistant electrocatalysts. In this review, we first summarized the developing status of various types of SMABs, explaining their working principle and comparing the battery performance. Then, the reported chlorine-resistant electrocatalysts were classified. The composition and structural design strategies of high-efficient chlorine-resistant ORR/OER electrocatalysts in seawater electrolytes were comprehensively summarized. Finally, the main challenges to be overcome in the commercialization of SMABs were discussed.","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":"90 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superlattices and Microstructures","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.20517/microstructures.2023.30","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 1
Abstract
Seawater metal-air batteries (SMABs) are promising energy storage technologies for their advantages of high energy density, intrinsic safety, and low cost. However, the presence of such chloride ions complex components in seawater inevitably has complex effects on the air electrode process, including oxygen reduction and oxygen evolution reactions (ORR and OER), which requires the development of highly-active chloride-resistant electrocatalysts. In this review, we first summarized the developing status of various types of SMABs, explaining their working principle and comparing the battery performance. Then, the reported chlorine-resistant electrocatalysts were classified. The composition and structural design strategies of high-efficient chlorine-resistant ORR/OER electrocatalysts in seawater electrolytes were comprehensively summarized. Finally, the main challenges to be overcome in the commercialization of SMABs were discussed.
期刊介绍:
Superlattices and Microstructures has continued as Micro and Nanostructures. Micro and Nanostructures is a journal disseminating the science and technology of micro-structures and nano-structures in materials and their devices, including individual and collective use of semiconductors, metals and insulators for the exploitation of their unique properties. The journal hosts papers dealing with fundamental and applied experimental research as well as theoretical studies. Fields of interest, including emerging ones, cover:
• Novel micro and nanostructures
• Nanomaterials (nanowires, nanodots, 2D materials ) and devices
• Synthetic heterostructures
• Plasmonics
• Micro and nano-defects in materials (semiconductor, metal and insulators)
• Surfaces and interfaces of thin films
In addition to Research Papers, the journal aims at publishing Topical Reviews providing insights into rapidly evolving or more mature fields. Written by leading researchers in their respective fields, those articles are commissioned by the Editorial Board.
Formerly known as Superlattices and Microstructures, with a 2021 IF of 3.22 and 2021 CiteScore of 5.4