Sifatullah Bahij, Safiullah Omary, F. Feugeas, Amanullah Faqiri
{"title":"Structural Strengthening/Repair of Reinforced Concrete (RC) Beams by Different Fiber-Reinforced Cementitious Materials - A State-of-the-Art Review","authors":"Sifatullah Bahij, Safiullah Omary, F. Feugeas, Amanullah Faqiri","doi":"10.37421/jcde.2020.10.354","DOIUrl":null,"url":null,"abstract":"In the last few decades, premature deterioration of reinforced concrete (RC) structures has become a serious problem because of severe environmental actions, overloading, design faults, and materials deficiencies. Therefore, repair and strengthening of RC elements in existing structures are very important to extend their service life. There are numerous methods for retrofitting and strengthening of RC structural components such as; steel plate bonding, external pre-stressing, section enlargement, fiber-reinforced polymer (FRP) wrapping, and so on. Although these modifications can successfully improve the load-bearing capacity of the beams, they are still prone to corrosion damage resulting in failure of the strengthened elements. Therefore, many researchers used cementitious materials due to its low-cost, corrosion resistance, and resulted in the improvement of the tensile and fatigue behaviors. Different types of cementitious materials such as; fiber-reinforced concrete (FRC), high performance concrete (HPC), high strength concrete (HSC), ultra-high performance concrete (UHPC), steel fiber-reinforced high strength lightweight self-compacting concrete (SHLSCC), fabrics reinforced cementitious material (FRCM) and so on have been used to strengthen structural elements. This paper summarized previously published research papers concerning the structural behaviors of RC beams strengthened by different cementitious materials. Shear behaviors, flexural characteristics, torsional properties, deflection, cracking propagation, and twisting angle of the strengthened beams are explained in the present paper. Finally, proper methods are proposed for strengthening RC beams under various loading conditions.","PeriodicalId":52256,"journal":{"name":"Tumu yu Huanjing Gongcheng Xuebao/Journal of Civil and Environmental Engineering","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tumu yu Huanjing Gongcheng Xuebao/Journal of Civil and Environmental Engineering","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.37421/jcde.2020.10.354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 7
Abstract
In the last few decades, premature deterioration of reinforced concrete (RC) structures has become a serious problem because of severe environmental actions, overloading, design faults, and materials deficiencies. Therefore, repair and strengthening of RC elements in existing structures are very important to extend their service life. There are numerous methods for retrofitting and strengthening of RC structural components such as; steel plate bonding, external pre-stressing, section enlargement, fiber-reinforced polymer (FRP) wrapping, and so on. Although these modifications can successfully improve the load-bearing capacity of the beams, they are still prone to corrosion damage resulting in failure of the strengthened elements. Therefore, many researchers used cementitious materials due to its low-cost, corrosion resistance, and resulted in the improvement of the tensile and fatigue behaviors. Different types of cementitious materials such as; fiber-reinforced concrete (FRC), high performance concrete (HPC), high strength concrete (HSC), ultra-high performance concrete (UHPC), steel fiber-reinforced high strength lightweight self-compacting concrete (SHLSCC), fabrics reinforced cementitious material (FRCM) and so on have been used to strengthen structural elements. This paper summarized previously published research papers concerning the structural behaviors of RC beams strengthened by different cementitious materials. Shear behaviors, flexural characteristics, torsional properties, deflection, cracking propagation, and twisting angle of the strengthened beams are explained in the present paper. Finally, proper methods are proposed for strengthening RC beams under various loading conditions.