Pluripotent human stem cells: Standing on the shoulders of giants.

I. Damjanov, P. Andrews
{"title":"Pluripotent human stem cells: Standing on the shoulders of giants.","authors":"I. Damjanov, P. Andrews","doi":"10.1387/ijdb.160437id","DOIUrl":null,"url":null,"abstract":"The advent of human pluripotent stem cells, with the first derivation of human embryonic stem cells in 1998, and of human induced pluripotent stem cells in 2007, has ushered in an era of considerable excitement about the prospects of using these cells to develop new opportunities for healthcare, from their potential for regenerative medicine to their use as tools for studying the cellular basis of many diseases and the discovery of new drugs. But as with the flowering of many new areas in science, the biology of human pluripotent stem cells has its roots in a long history of, sometimes, less fêted research. In a period when research funding is frequently driven by a desire to meet specific clinical or economic goals, it is salutary to remember that the opportunities offered by human pluripotent stem cells have their origins in curiosity driven research without any of those goals in mind. In this case, that research focused on the relatively rare gonadal cancers known as teratomas, tumors that have fascinated people since antiquity because their sometime grotesque manifestations with haphazard collections of tissues and sometimes recognizable body parts. Although well known to clinical pathologists it was the pioneering work of Leroy Stevens, who first discovered that teratomas occur at a significant rate in the 129 strain of the laboratory mouse and could be produced experimentally, that laid the foundations for our understanding of the biology of these tumors and the central role of the embryonal carcinoma cell, one of the archetypal tumor stem cells.","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International journal of developmental biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1387/ijdb.160437id","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of human pluripotent stem cells, with the first derivation of human embryonic stem cells in 1998, and of human induced pluripotent stem cells in 2007, has ushered in an era of considerable excitement about the prospects of using these cells to develop new opportunities for healthcare, from their potential for regenerative medicine to their use as tools for studying the cellular basis of many diseases and the discovery of new drugs. But as with the flowering of many new areas in science, the biology of human pluripotent stem cells has its roots in a long history of, sometimes, less fêted research. In a period when research funding is frequently driven by a desire to meet specific clinical or economic goals, it is salutary to remember that the opportunities offered by human pluripotent stem cells have their origins in curiosity driven research without any of those goals in mind. In this case, that research focused on the relatively rare gonadal cancers known as teratomas, tumors that have fascinated people since antiquity because their sometime grotesque manifestations with haphazard collections of tissues and sometimes recognizable body parts. Although well known to clinical pathologists it was the pioneering work of Leroy Stevens, who first discovered that teratomas occur at a significant rate in the 129 strain of the laboratory mouse and could be produced experimentally, that laid the foundations for our understanding of the biology of these tumors and the central role of the embryonal carcinoma cell, one of the archetypal tumor stem cells.
人类多能干细胞:站在巨人的肩膀上。
人类多能干细胞的出现,以及1998年人类胚胎干细胞和2007年人类诱导多能干细胞的首次衍生,开启了一个令人兴奋的时代,人们对利用这些细胞为医疗保健开发新机会的前景充满期待,从它们在再生医学方面的潜力,到它们被用作研究许多疾病的细胞基础和发现新药的工具。但是,正如许多新科学领域的蓬勃发展一样,人类多能干细胞生物学的根源在于一段漫长的历史,有时,研究较少fêted。在一个研究经费经常被满足特定临床或经济目标的愿望所驱动的时代,记住人类多能干细胞提供的机会源于好奇心驱动的研究,而不考虑任何这些目标是有益的。在这个案例中,研究的重点是相对罕见的被称为畸胎瘤的性腺癌,这种肿瘤自古以来就吸引着人们,因为它们有时表现怪异,组织杂乱无章,有时还带有可识别的身体部位。尽管临床病理学家都知道,是Leroy Stevens的开创性工作,他首先发现畸胎瘤在实验室小鼠129株中发生率很高,并且可以通过实验产生,为我们理解这些肿瘤的生物学和胚胎癌细胞(一种原型肿瘤干细胞)的中心作用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信