Multi-Component Resource Recycling from Waste Light-Emitting Diode Under Hydrothermal Condition: Plastic Package Degradation, Speciation of Nano-TiO2, and Environmental Impact Assessment

IF 10.1 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
{"title":"Multi-Component Resource Recycling from Waste Light-Emitting Diode Under Hydrothermal Condition: Plastic Package Degradation, Speciation of Nano-TiO2, and Environmental Impact Assessment","authors":"","doi":"10.1016/j.eng.2023.04.008","DOIUrl":null,"url":null,"abstract":"<div><p>Light emitting diodes (LEDs) have accounted for most of the lighting market as the technology matures and costs continue to reduce. As a new type of e-waste, LED is a double-edged sword, as it contains not only precious and rare metals but also organic packaging materials. In previous studies, LED recycling focused on recovering precious and strategic metals while ignoring harmful substances such as organic packaging materials. Unlike crushing and other traditional methods, hydrothermal treatment can provide an environment-friendly process for decomposing packaging materials. This work developed a closed reaction vessel, where the degradation rate of plastic polyphthalamide (PPA) was close to 100%, with nano-TiO<sub>2</sub> encapsulated in plastic PPA being efficiently recovered, while metals contained in LED were also recycled efficiently. Besides, the role of water in plastic PPA degradation that has been overlooked in current studies was explored and speculated in detail in this work. Environmental impact assessment revealed that the proposed recycling route for waste LED could significantly reduce the overall environmental impact compared to the currently published processes. Especially the developed method could reduce more than half the impact of global warming. Furthermore, this research provides a theoretical basis and a promising method for recycling other plastic-packaged e-waste devices, such as integrated circuits.</p></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"39 ","pages":"Pages 253-261"},"PeriodicalIF":10.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095809923001947/pdfft?md5=be17e85a06daba3a31c44952a852aab8&pid=1-s2.0-S2095809923001947-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809923001947","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Light emitting diodes (LEDs) have accounted for most of the lighting market as the technology matures and costs continue to reduce. As a new type of e-waste, LED is a double-edged sword, as it contains not only precious and rare metals but also organic packaging materials. In previous studies, LED recycling focused on recovering precious and strategic metals while ignoring harmful substances such as organic packaging materials. Unlike crushing and other traditional methods, hydrothermal treatment can provide an environment-friendly process for decomposing packaging materials. This work developed a closed reaction vessel, where the degradation rate of plastic polyphthalamide (PPA) was close to 100%, with nano-TiO2 encapsulated in plastic PPA being efficiently recovered, while metals contained in LED were also recycled efficiently. Besides, the role of water in plastic PPA degradation that has been overlooked in current studies was explored and speculated in detail in this work. Environmental impact assessment revealed that the proposed recycling route for waste LED could significantly reduce the overall environmental impact compared to the currently published processes. Especially the developed method could reduce more than half the impact of global warming. Furthermore, this research provides a theoretical basis and a promising method for recycling other plastic-packaged e-waste devices, such as integrated circuits.

水热条件下从废发光二极管中回收多组分资源:塑料封装降解、纳米二氧化钛的种类和环境影响评估
随着技术的成熟和成本的不断降低,发光二极管(LED)已占据照明市场的大部分份额。作为一种新型电子垃圾,LED 是一把双刃剑,因为它不仅含有贵金属和稀有金属,还含有有机包装材料。在以往的研究中,LED 回收的重点是回收贵金属和战略金属,而忽略了有机包装材料等有害物质。与粉碎和其他传统方法不同,水热处理可以为包装材料的分解提供一种环境友好型工艺。这项工作开发了一个封闭的反应容器,塑料聚酞酰胺(PPA)的降解率接近 100%,塑料 PPA 中封装的纳米二氧化钛得到了有效回收,LED 中含有的金属也得到了有效回收。此外,水在塑料 PPA 降解中的作用在目前的研究中一直被忽视,本研究对这一问题进行了详细的探讨和推测。环境影响评估显示,与目前已公布的工艺相比,所建议的废 LED 回收路线可显著减少对环境的整体影响。特别是所开发的方法可以减少一半以上的全球变暖影响。此外,这项研究还为回收集成电路等其他塑料包装电子废弃设备提供了理论基础和可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信