Approaches to studying the developmental switch of Strongyloides – Moving beyond the dauer hypothesis

IF 1.4 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mark Viney, Robert Morris
{"title":"Approaches to studying the developmental switch of Strongyloides – Moving beyond the dauer hypothesis","authors":"Mark Viney,&nbsp;Robert Morris","doi":"10.1016/j.molbiopara.2022.111477","DOIUrl":null,"url":null,"abstract":"<div><p><em>Strongyloides’</em> developmental switch between direct, parasitic and indirect, free-living development has intrigued, confused, and fascinated biologists since it was first discovered more than 100 years ago. Proximately, the switch is controlled by environmental conditions that developing larvae are exposed to, but genotypes differ in their sensitivity to these cues. Ultimately, selection will act on this switch to generate a direct <em>vs.</em> indirect phenotype that maximises a genotype’s fitness, but we have a poor understanding of the relative fitness advantages of these different routes of development. Mechanistically, the switch senses and transduces environmental cues, integrates signals that are then used to make a developmental decision which is then enacted. Seeking to understand the molecular form of this process has focussed on the <em>C. elegans</em> dauer hypothesis, but this has been found to be wanting. So, we argue that the time has come to move beyond the dauer hypothesis and better refine our question to ask: What is it that controls the variation in developmental switching among <em>Strongyloides</em> genotypes? We discuss approaches to achieve this research aim that now lies within our grasp.</p></div>","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166685122000317/pdfft?md5=feb5dbcc611e908655b3067dd921f450&pid=1-s2.0-S0166685122000317-main.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and biochemical parasitology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166685122000317","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Strongyloides’ developmental switch between direct, parasitic and indirect, free-living development has intrigued, confused, and fascinated biologists since it was first discovered more than 100 years ago. Proximately, the switch is controlled by environmental conditions that developing larvae are exposed to, but genotypes differ in their sensitivity to these cues. Ultimately, selection will act on this switch to generate a direct vs. indirect phenotype that maximises a genotype’s fitness, but we have a poor understanding of the relative fitness advantages of these different routes of development. Mechanistically, the switch senses and transduces environmental cues, integrates signals that are then used to make a developmental decision which is then enacted. Seeking to understand the molecular form of this process has focussed on the C. elegans dauer hypothesis, but this has been found to be wanting. So, we argue that the time has come to move beyond the dauer hypothesis and better refine our question to ask: What is it that controls the variation in developmental switching among Strongyloides genotypes? We discuss approaches to achieve this research aim that now lies within our grasp.

研究类圆线虫发育开关的方法——超越道尔假说
自100多年前首次被发现以来,圆线虫在直接、寄生和间接、自由生活发展之间的发育转换一直引起了生物学家的兴趣、困惑和着迷。直接地说,这种开关是由发育中的幼虫所暴露的环境条件控制的,但基因型对这些线索的敏感性不同。最终,选择将作用于这种转换,从而产生最大化基因型适应度的直接或间接表型,但我们对这些不同发育途径的相对适应度优势了解甚少。从机制上讲,这种开关感知和转导环境信号,整合信号,然后用来做出发展决策,然后付诸实施。试图理解这一过程的分子形式集中在秀丽隐杆线虫的假说上,但这已经被发现是缺乏的。因此,我们认为现在是时候超越道尔假说,更好地完善我们的问题:是什么控制了类圆线虫基因型之间发育转换的变化?我们将讨论实现这一研究目标的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
51
审稿时长
63 days
期刊介绍: The journal provides a medium for rapid publication of investigations of the molecular biology and biochemistry of parasitic protozoa and helminths and their interactions with both the definitive and intermediate host. The main subject areas covered are: • the structure, biosynthesis, degradation, properties and function of DNA, RNA, proteins, lipids, carbohydrates and small molecular-weight substances • intermediary metabolism and bioenergetics • drug target characterization and the mode of action of antiparasitic drugs • molecular and biochemical aspects of membrane structure and function • host-parasite relationships that focus on the parasite, particularly as related to specific parasite molecules. • analysis of genes and genome structure, function and expression • analysis of variation in parasite populations relevant to genetic exchange, pathogenesis, drug and vaccine target characterization, and drug resistance. • parasite protein trafficking, organelle biogenesis, and cellular structure especially with reference to the roles of specific molecules • parasite programmed cell death, development, and cell division at the molecular level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信