Florio M. Ciaglia, F. Cosmo, Alberto Ibort, G. Marmo, Luca Schiavone
{"title":"Schwinger's picture of quantum mechanics: 2-groupoids and symmetries","authors":"Florio M. Ciaglia, F. Cosmo, Alberto Ibort, G. Marmo, Luca Schiavone","doi":"10.3934/jgm.2021008","DOIUrl":null,"url":null,"abstract":"Starting from the groupoid approach to Schwinger's picture of Quantum Mechanics, a proposal for the description of symmetries in this framework is advanced. It is shown that, given a groupoid \\begin{document}$ G\\rightrightarrows \\Omega $\\end{document} associated with a (quantum) system, there are two possible descriptions of its symmetries, one \"microscopic\", the other one \"global\". The microscopic point of view leads to the introduction of an additional layer over the grupoid \\begin{document}$ G $\\end{document} , giving rise to a suitable algebraic structure of 2-groupoid. On the other hand, taking advantage of the notion of group of bisections of a given groupoid, the global perspective allows to construct a group of symmetries out of a 2-groupoid. The latter notion allows to introduce an analog of the Wigner's theorem for quantum symmetries in the groupoid approach to Quantum Mechanics.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"174 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jgm.2021008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4
Abstract
Starting from the groupoid approach to Schwinger's picture of Quantum Mechanics, a proposal for the description of symmetries in this framework is advanced. It is shown that, given a groupoid \begin{document}$ G\rightrightarrows \Omega $\end{document} associated with a (quantum) system, there are two possible descriptions of its symmetries, one "microscopic", the other one "global". The microscopic point of view leads to the introduction of an additional layer over the grupoid \begin{document}$ G $\end{document} , giving rise to a suitable algebraic structure of 2-groupoid. On the other hand, taking advantage of the notion of group of bisections of a given groupoid, the global perspective allows to construct a group of symmetries out of a 2-groupoid. The latter notion allows to introduce an analog of the Wigner's theorem for quantum symmetries in the groupoid approach to Quantum Mechanics.
Starting from the groupoid approach to Schwinger's picture of Quantum Mechanics, a proposal for the description of symmetries in this framework is advanced. It is shown that, given a groupoid \begin{document}$ G\rightrightarrows \Omega $\end{document} associated with a (quantum) system, there are two possible descriptions of its symmetries, one "microscopic", the other one "global". The microscopic point of view leads to the introduction of an additional layer over the grupoid \begin{document}$ G $\end{document} , giving rise to a suitable algebraic structure of 2-groupoid. On the other hand, taking advantage of the notion of group of bisections of a given groupoid, the global perspective allows to construct a group of symmetries out of a 2-groupoid. The latter notion allows to introduce an analog of the Wigner's theorem for quantum symmetries in the groupoid approach to Quantum Mechanics.
期刊介绍:
The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal:
1. Lagrangian and Hamiltonian mechanics
2. Symplectic and Poisson geometry and their applications to mechanics
3. Geometric and optimal control theory
4. Geometric and variational integration
5. Geometry of stochastic systems
6. Geometric methods in dynamical systems
7. Continuum mechanics
8. Classical field theory
9. Fluid mechanics
10. Infinite-dimensional dynamical systems
11. Quantum mechanics and quantum information theory
12. Applications in physics, technology, engineering and the biological sciences.