Schwinger's picture of quantum mechanics: 2-groupoids and symmetries

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Florio M. Ciaglia, F. Cosmo, Alberto Ibort, G. Marmo, Luca Schiavone
{"title":"Schwinger's picture of quantum mechanics: 2-groupoids and symmetries","authors":"Florio M. Ciaglia, F. Cosmo, Alberto Ibort, G. Marmo, Luca Schiavone","doi":"10.3934/jgm.2021008","DOIUrl":null,"url":null,"abstract":"Starting from the groupoid approach to Schwinger's picture of Quantum Mechanics, a proposal for the description of symmetries in this framework is advanced. It is shown that, given a groupoid \\begin{document}$ G\\rightrightarrows \\Omega $\\end{document} associated with a (quantum) system, there are two possible descriptions of its symmetries, one \"microscopic\", the other one \"global\". The microscopic point of view leads to the introduction of an additional layer over the grupoid \\begin{document}$ G $\\end{document} , giving rise to a suitable algebraic structure of 2-groupoid. On the other hand, taking advantage of the notion of group of bisections of a given groupoid, the global perspective allows to construct a group of symmetries out of a 2-groupoid. The latter notion allows to introduce an analog of the Wigner's theorem for quantum symmetries in the groupoid approach to Quantum Mechanics.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"174 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jgm.2021008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

Abstract

Starting from the groupoid approach to Schwinger's picture of Quantum Mechanics, a proposal for the description of symmetries in this framework is advanced. It is shown that, given a groupoid \begin{document}$ G\rightrightarrows \Omega $\end{document} associated with a (quantum) system, there are two possible descriptions of its symmetries, one "microscopic", the other one "global". The microscopic point of view leads to the introduction of an additional layer over the grupoid \begin{document}$ G $\end{document} , giving rise to a suitable algebraic structure of 2-groupoid. On the other hand, taking advantage of the notion of group of bisections of a given groupoid, the global perspective allows to construct a group of symmetries out of a 2-groupoid. The latter notion allows to introduce an analog of the Wigner's theorem for quantum symmetries in the groupoid approach to Quantum Mechanics.
Schwinger的量子力学图:二类群和对称性
Starting from the groupoid approach to Schwinger's picture of Quantum Mechanics, a proposal for the description of symmetries in this framework is advanced. It is shown that, given a groupoid \begin{document}$ G\rightrightarrows \Omega $\end{document} associated with a (quantum) system, there are two possible descriptions of its symmetries, one "microscopic", the other one "global". The microscopic point of view leads to the introduction of an additional layer over the grupoid \begin{document}$ G $\end{document} , giving rise to a suitable algebraic structure of 2-groupoid. On the other hand, taking advantage of the notion of group of bisections of a given groupoid, the global perspective allows to construct a group of symmetries out of a 2-groupoid. The latter notion allows to introduce an analog of the Wigner's theorem for quantum symmetries in the groupoid approach to Quantum Mechanics.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geometric Mechanics
Journal of Geometric Mechanics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.70
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal: 1. Lagrangian and Hamiltonian mechanics 2. Symplectic and Poisson geometry and their applications to mechanics 3. Geometric and optimal control theory 4. Geometric and variational integration 5. Geometry of stochastic systems 6. Geometric methods in dynamical systems 7. Continuum mechanics 8. Classical field theory 9. Fluid mechanics 10. Infinite-dimensional dynamical systems 11. Quantum mechanics and quantum information theory 12. Applications in physics, technology, engineering and the biological sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信