{"title":"Generalized point vortex dynamics on \\begin{document}$ \\mathbb{CP} ^2 $\\end{document}","authors":"J. Montaldi, Amna Shaddad","doi":"10.3934/jgm.2019030","DOIUrl":null,"url":null,"abstract":"This is the second of two companion papers. We describe a generalization of the point vortex system on surfaces to a Hamiltonian dynamical system consisting of two or three points on complex projective space \\begin{document}$ \\mathbb{CP} ^2 $\\end{document} interacting via a Hamiltonian function depending only on the distance between the points. The system has symmetry group SU(3). The first paper describes all possible momentum values for such systems, and here we apply methods of symplectic reduction and geometric mechanics to analyze the possible relative equilibria of such interacting generalized vortices. The different types of polytope depend on the values of the 'vortex strengths', which are manifested as coefficients of the symplectic forms on the copies of \\begin{document}$ \\mathbb{CP} ^2 $\\end{document} . We show that the reduced space for this Hamiltonian action for 3 vortices is generically a 2-sphere, and proceed to describe the reduced dynamics under simple hypotheses on the type of Hamiltonian interaction. The other non-trivial reduced spaces are topological spheres with isolated singular points. For 2 generalized vortices, the reduced spaces are just points, and the motion is governed by a collective Hamiltonian, whereas for 3 the reduced spaces are of dimension at most 2. In both cases the system will be completely integrable in the non-abelian sense.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"19 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jgm.2019030","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4
Abstract
This is the second of two companion papers. We describe a generalization of the point vortex system on surfaces to a Hamiltonian dynamical system consisting of two or three points on complex projective space \begin{document}$ \mathbb{CP} ^2 $\end{document} interacting via a Hamiltonian function depending only on the distance between the points. The system has symmetry group SU(3). The first paper describes all possible momentum values for such systems, and here we apply methods of symplectic reduction and geometric mechanics to analyze the possible relative equilibria of such interacting generalized vortices. The different types of polytope depend on the values of the 'vortex strengths', which are manifested as coefficients of the symplectic forms on the copies of \begin{document}$ \mathbb{CP} ^2 $\end{document} . We show that the reduced space for this Hamiltonian action for 3 vortices is generically a 2-sphere, and proceed to describe the reduced dynamics under simple hypotheses on the type of Hamiltonian interaction. The other non-trivial reduced spaces are topological spheres with isolated singular points. For 2 generalized vortices, the reduced spaces are just points, and the motion is governed by a collective Hamiltonian, whereas for 3 the reduced spaces are of dimension at most 2. In both cases the system will be completely integrable in the non-abelian sense.
Generalized point vortex dynamics on \begin{document}$ \mathbb{CP} ^2 $\end{document}
This is the second of two companion papers. We describe a generalization of the point vortex system on surfaces to a Hamiltonian dynamical system consisting of two or three points on complex projective space \begin{document}$ \mathbb{CP} ^2 $\end{document} interacting via a Hamiltonian function depending only on the distance between the points. The system has symmetry group SU(3). The first paper describes all possible momentum values for such systems, and here we apply methods of symplectic reduction and geometric mechanics to analyze the possible relative equilibria of such interacting generalized vortices. The different types of polytope depend on the values of the 'vortex strengths', which are manifested as coefficients of the symplectic forms on the copies of \begin{document}$ \mathbb{CP} ^2 $\end{document} . We show that the reduced space for this Hamiltonian action for 3 vortices is generically a 2-sphere, and proceed to describe the reduced dynamics under simple hypotheses on the type of Hamiltonian interaction. The other non-trivial reduced spaces are topological spheres with isolated singular points. For 2 generalized vortices, the reduced spaces are just points, and the motion is governed by a collective Hamiltonian, whereas for 3 the reduced spaces are of dimension at most 2. In both cases the system will be completely integrable in the non-abelian sense.
期刊介绍:
The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal:
1. Lagrangian and Hamiltonian mechanics
2. Symplectic and Poisson geometry and their applications to mechanics
3. Geometric and optimal control theory
4. Geometric and variational integration
5. Geometry of stochastic systems
6. Geometric methods in dynamical systems
7. Continuum mechanics
8. Classical field theory
9. Fluid mechanics
10. Infinite-dimensional dynamical systems
11. Quantum mechanics and quantum information theory
12. Applications in physics, technology, engineering and the biological sciences.