Dirac’s theorem for random regular graphs

Padraig Condon, Alberto Espuny Díaz, António Girão, Daniela Kühn, Deryk Osthus
{"title":"Dirac’s theorem for random regular graphs","authors":"Padraig Condon, Alberto Espuny Díaz, António Girão, Daniela Kühn, Deryk Osthus","doi":"10.1017/S0963548320000346","DOIUrl":null,"url":null,"abstract":"Abstract We prove a ‘resilience’ version of Dirac’s theorem in the setting of random regular graphs. More precisely, we show that whenever d is sufficiently large compared to \n$\\epsilon > 0$\n , a.a.s. the following holds. Let \n$G'$\n be any subgraph of the random n-vertex d-regular graph \n$G_{n,d}$\n with minimum degree at least \n$$(1/2 + \\epsilon )d$$\n . Then \n$G'$\n is Hamiltonian. This proves a conjecture of Ben-Shimon, Krivelevich and Sudakov. Our result is best possible: firstly the condition that d is large cannot be omitted, and secondly the minimum degree bound cannot be improved.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548320000346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract We prove a ‘resilience’ version of Dirac’s theorem in the setting of random regular graphs. More precisely, we show that whenever d is sufficiently large compared to $\epsilon > 0$ , a.a.s. the following holds. Let $G'$ be any subgraph of the random n-vertex d-regular graph $G_{n,d}$ with minimum degree at least $$(1/2 + \epsilon )d$$ . Then $G'$ is Hamiltonian. This proves a conjecture of Ben-Shimon, Krivelevich and Sudakov. Our result is best possible: firstly the condition that d is large cannot be omitted, and secondly the minimum degree bound cannot be improved.
随机正则图的狄拉克定理
摘要在随机正则图的集合中证明了狄拉克定理的一个“弹性”版本。更准确地说,我们表明,当d与$\epsilon > 0$相比足够大时,也就是说,以下成立。设$G'$为随机n顶点d正则图$G_{n,d}$最小度至少为$$(1/2 + \epsilon )d$$的任意子图。那么$G'$就是汉密尔顿函数。这证明了Ben-Shimon, Krivelevich和Sudakov的一个猜想。我们的结果是最好的:首先d很大的条件不能省略,其次最小度界不能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信