F. Boeuf, T. Skotnicki, S. Monfray, C. Julien, D. Dutartre, J. Martins, P. Mazoyer, R. Palla, B. Tavel, P. Ribot, E. Søndergård, A. Sanquer
{"title":"16 nm planar NMOSFET manufacturable within state-of-the-art CMOS process thanks to specific design and optimisation","authors":"F. Boeuf, T. Skotnicki, S. Monfray, C. Julien, D. Dutartre, J. Martins, P. Mazoyer, R. Palla, B. Tavel, P. Ribot, E. Søndergård, A. Sanquer","doi":"10.1109/IEDM.2001.979589","DOIUrl":null,"url":null,"abstract":"In nanometer MOSFETs, because of the small channel size, mesoscopic and even quantum effects can come into play. We have fabricated l6 nm NMOS devices featuring I/sub on/=400 /spl mu/A//spl mu/m and I/sub off/=0.8 /spl mu/A//spl mu/m and demonstrate that the FET principle is still confirmed at room temperature. We have deliberately used a non-overlapped SD/gate architecture, showing that, with adapted channel doping, it not only performs equally as well as the overlapped one, but also shows 1000/spl times/ reduced dispersion and is easily manufacturable. Finally, we show that quantization of energy in the channel motivates a study of performance at low temperature, and that the leading effect at low temperature and low voltage is Coulomb blockade.","PeriodicalId":13825,"journal":{"name":"International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224)","volume":"113 1","pages":"29.5.1-29.5.4"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2001.979589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60
Abstract
In nanometer MOSFETs, because of the small channel size, mesoscopic and even quantum effects can come into play. We have fabricated l6 nm NMOS devices featuring I/sub on/=400 /spl mu/A//spl mu/m and I/sub off/=0.8 /spl mu/A//spl mu/m and demonstrate that the FET principle is still confirmed at room temperature. We have deliberately used a non-overlapped SD/gate architecture, showing that, with adapted channel doping, it not only performs equally as well as the overlapped one, but also shows 1000/spl times/ reduced dispersion and is easily manufacturable. Finally, we show that quantization of energy in the channel motivates a study of performance at low temperature, and that the leading effect at low temperature and low voltage is Coulomb blockade.