Sanket Shah, Natalie Behrle, M. Salek, Masoud Farahmand, Anmol Goyal, A. Divekar, Ethan O. Kung
{"title":"Reproducing patient-specific 3D-model of pulmonary artery hemodynamics by means of in vitro benchtop simulation","authors":"Sanket Shah, Natalie Behrle, M. Salek, Masoud Farahmand, Anmol Goyal, A. Divekar, Ethan O. Kung","doi":"10.2217/3dp-2022-0004","DOIUrl":null,"url":null,"abstract":"Aim: Patient-specific fluid dynamic simulation of pulmonary arteries can be a valuable tool in pre-procedural planning. Materials & methods: For three patients, soft, deformable models of the pulmonary arteries were 3D printed from cardiac magnetic resonance data. In vitro hemodynamics were replicated using a gear flow pump, 40% glycerol solution and a physical Windkessel module. The pulmonary pressures were compared with patient cardiac catheterization pressure. Results: The pulmonary artery pressures and flow volumes had an adequate goodness of fit except for pulmonary pressures in patient 2. Conclusion: Cardiac magnetic resonance angiogram and flow volume data can be leveraged to generate a patient-specific 3D model and reproduce in vivo hemodynamics by means of in vitro simulation.","PeriodicalId":73578,"journal":{"name":"Journal of 3D printing in medicine","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of 3D printing in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/3dp-2022-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: Patient-specific fluid dynamic simulation of pulmonary arteries can be a valuable tool in pre-procedural planning. Materials & methods: For three patients, soft, deformable models of the pulmonary arteries were 3D printed from cardiac magnetic resonance data. In vitro hemodynamics were replicated using a gear flow pump, 40% glycerol solution and a physical Windkessel module. The pulmonary pressures were compared with patient cardiac catheterization pressure. Results: The pulmonary artery pressures and flow volumes had an adequate goodness of fit except for pulmonary pressures in patient 2. Conclusion: Cardiac magnetic resonance angiogram and flow volume data can be leveraged to generate a patient-specific 3D model and reproduce in vivo hemodynamics by means of in vitro simulation.