{"title":"Cross-Validation, Bootstrap, and Support Vector Machines","authors":"M. Tsujitani, Yusuke Tanaka","doi":"10.1155/2011/302572","DOIUrl":null,"url":null,"abstract":"This paper considers the applications of resampling methods to support vector machines (SVMs). We take into account the leaving-one-out cross-validation (CV) when determining the optimum tuning parameters and bootstrapping the deviance in order to summarize the measure of goodness-of-fit in SVMs. The leaving-one-out CV is also adapted in order to provide estimates of the bias of the excess error in a prediction rule constructed with training samples. We analyze the data from a mackerel-egg survey and a liver-disease study.","PeriodicalId":7288,"journal":{"name":"Adv. Artif. Neural Syst.","volume":"63 1","pages":"302572:1-302572:6"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Neural Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/302572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
This paper considers the applications of resampling methods to support vector machines (SVMs). We take into account the leaving-one-out cross-validation (CV) when determining the optimum tuning parameters and bootstrapping the deviance in order to summarize the measure of goodness-of-fit in SVMs. The leaving-one-out CV is also adapted in order to provide estimates of the bias of the excess error in a prediction rule constructed with training samples. We analyze the data from a mackerel-egg survey and a liver-disease study.