HBV DNA Integration into Telomerase or MLL4 Genes and TERT Promoter Point Mutation as Three Independent Signatures in Subgrouping HBV-Related HCC with Distinct Features.
{"title":"HBV DNA Integration into Telomerase or MLL4 Genes and TERT Promoter Point Mutation as Three Independent Signatures in Subgrouping HBV-Related HCC with Distinct Features.","authors":"Chiao-Ling Li, Chia-Lang Hsu, You-Yu Lin, Ming-Chih Ho, Ray-Heng Hu, Chi-Ling Chen, Tung-Ching Ho, Yung-Feng Lin, Shih-Feng Tsai, Sheng-Tai Tzeng, Chin-Fang Huang, Ya-Chun Wang, Shiou-Hwei Yeh, Pei-Jer Chen","doi":"10.1159/000530699","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>A set of genetic mutations to classify hepatocellular carcinoma (HCC) useful to clinical studies is an unmet need. Hepatitis B virus-related HCC (HBV-HCC) harbors a unique genetic mutation, namely, the HBV integration, among other somatic endogenous gene mutations. We explored a combination of HBV DNA integrations and common somatic mutations to classify HBV-HCC by using a capture-sequencing platform.</p><p><strong>Methods: </strong>A total of 153 HBV-HCCs after surgical resection were subjected to capture sequencing to identify HBV integrations and three common somatic mutations in genomes. Three mutually exclusive mutations, HBV DNA integration into the TERT promoter, HBV DNA integration into MLL4, or TERT promoter point mutation, were identified in HBV-HCC.</p><p><strong>Results: </strong>They were used to classify HBV-HCCs into four groups: G1 with HBV-TERT integration (25.5%); G2 with HBV-MLL4 integration (10.5%); G3 with TERT promoter mutation (30.1%); and G4 without these three mutations (34.0%). Clinically, G3 has the highest male-to-female ratio, cirrhosis rate, and associated with higher early recurrence and mortality after resection, but G4 has the best outcome. Transcriptomic analysis revealed a grouping different from the published ones and G2 with an active immune profile related to immune checkpoint inhibitor response. Analysis of integrated HBV DNA provided clues for HBV genotype and variants in carcinogenesis of different HCC subgroup. This new classification was also validated in another independent cohort.</p><p><strong>Conclusion: </strong>A simple and robust genetic classification was developed to aid in understanding HBV-HCC and in harmonizing clinical studies.</p>","PeriodicalId":180,"journal":{"name":"International Journal of Cancer","volume":"98 1","pages":"41-55"},"PeriodicalIF":5.7000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10857820/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000530699","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: A set of genetic mutations to classify hepatocellular carcinoma (HCC) useful to clinical studies is an unmet need. Hepatitis B virus-related HCC (HBV-HCC) harbors a unique genetic mutation, namely, the HBV integration, among other somatic endogenous gene mutations. We explored a combination of HBV DNA integrations and common somatic mutations to classify HBV-HCC by using a capture-sequencing platform.
Methods: A total of 153 HBV-HCCs after surgical resection were subjected to capture sequencing to identify HBV integrations and three common somatic mutations in genomes. Three mutually exclusive mutations, HBV DNA integration into the TERT promoter, HBV DNA integration into MLL4, or TERT promoter point mutation, were identified in HBV-HCC.
Results: They were used to classify HBV-HCCs into four groups: G1 with HBV-TERT integration (25.5%); G2 with HBV-MLL4 integration (10.5%); G3 with TERT promoter mutation (30.1%); and G4 without these three mutations (34.0%). Clinically, G3 has the highest male-to-female ratio, cirrhosis rate, and associated with higher early recurrence and mortality after resection, but G4 has the best outcome. Transcriptomic analysis revealed a grouping different from the published ones and G2 with an active immune profile related to immune checkpoint inhibitor response. Analysis of integrated HBV DNA provided clues for HBV genotype and variants in carcinogenesis of different HCC subgroup. This new classification was also validated in another independent cohort.
Conclusion: A simple and robust genetic classification was developed to aid in understanding HBV-HCC and in harmonizing clinical studies.
期刊介绍:
The International Journal of Cancer (IJC) is the official journal of the Union for International Cancer Control—UICC; it appears twice a month. IJC invites submission of manuscripts under a broad scope of topics relevant to experimental and clinical cancer research and publishes original Research Articles and Short Reports under the following categories:
-Cancer Epidemiology-
Cancer Genetics and Epigenetics-
Infectious Causes of Cancer-
Innovative Tools and Methods-
Molecular Cancer Biology-
Tumor Immunology and Microenvironment-
Tumor Markers and Signatures-
Cancer Therapy and Prevention